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Abstract Various boundary element method (BEM) based
approaches to solve crack problems are discussed. The
displacement method, J-integral method and the modi®ed
crack closure integral (MCCI) method for the evaluation of
the stress intensity factors (SIFs) are reviewed. Effects of
partial and total modelling of singularities on the accuracy
of the results have been presented. Elements capable of
partial and total modelling of the wellknown square root
singularities, variable order singularities, neighbouring
variable order singularities, etc., are also reviewed. Case
studies are included to illustrate the effectiveness of the
various methods of calculation of the SIFs and the per-
formance of the special elements.

List of symbols
a crack length
c, d singularity parameter
cn coef®cients used in MCCI calculation
E elastic modulus
GI, GII strain energy release rate in mode I, mode II
h, L, W domain geometric dimensions
KI, KII stress intensity factors
KT amplitude of thermal singularity
l crack tip element size/length of microcrack
Ni, Mi shape functions
p, q components of crack edge loading normal and

parallel to crack
r distance from crack tip
s, t components of traction parallel and normal to

crack
u, v components of displacement parallel and nor-

mal to crack
WI, WII crack closure work
x, y Cartesian co-ordinates
Y SIF correction factor
Da kink length
a coef®cient of thermal expansion
d distance from main crack tip to that of neigh-

bouring microcrack

h crack orientation with x-axis
l shear modulus
m Poisson's ratio
n natural coordinate
/ potential/temperature
k potential/temperature gradient
C boundary of a domain

1
Introduction
The stress intensity factor (SIF) plays a vital role in the
application of the principles of linear elastic fracture me-
chanics (LEFM) to practice. The determination of SIF for
real-life components with crack is therefore very impor-
tant. The SIFs can be determined through analytical, nu-
merical and experimental methods (Rooke and Cartwright,
1976; Murakami, 1987). The analytical methods are mostly
suitable for idealised geometries, loading and boundary
conditions. An up-to date and exhaustive discussion of
computational fracture mechanics methodologies is
available in Atluri (1997). The numerical methods, e.g. the
®nite element method (FEM) and the boundary element
method (BEM), have proved very useful for practical ge-
ometries. Several investigators, e.g. Watwood (1969), Chan
et al. (1970), Parks (1974), Barsoum (1976), Tracey and
Cook (1977), etc., have employed FEM to evaluate the SIFs.
Jawson (1963), Symm (1963), Rizzo (1967), Cruse (1969),
etc., have applied BEM for fracture mechanics applica-
tions. Recently, Cruse (1997) has reviewed the 25 years of
developments of fracture mechanics analysis using BEM.

Analysing a mixed mode crack problem, where both the
crack edges are modelled in a single domain, leads to the
degeneracy of the boundary element (BE) equations. This
can be avoided adapting either the subregion technique
(Blandford et al., 1981) or the dual boundary element
method (DBEM) (Portela and Aliabadi, 1992a). A crack
can be subjected to remote mechanical loading, crack edge
loading (e.g. ¯uid pressure), thermal loading, etc. While
the mechanical loading can be taken care of in a routine
manner in the BEM, the thermal loading requires special
attention (Rizzo and Shippy, 1977).

It is wellknown that the SIFs can be obtained by the
displacement method and energy method in a numerical
technique. One of the versatile and accurate energy based
method is the modi®ed crack closure integral (MCCI)
procedure. The MCCI technique is ®rst implemented in
the FEM by Rybicki and Kanninen (1977). Later many
investigators have employed this and shown the effec-
tiveness of this procedure in an accurate calculation of the
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SIFs. Recently this method has also been adapted in the
BEM. The various methods of evaluation of the SIFs in
general and the MCCI in particular have been reviewed in
the present paper.

In the BEM an analysis of crack involves modelling of
the crack tip singularities. While in the displacement ®nite
element formulation, the modelling of strain singularity
automatically ensures the stress singularity, in the BEM
the strain and stress (or traction) singularities are to be
modelled separately. From the standpoint of practical
applications of the BEM it is important to know the in-
¯uences of partial (i.e. strain singularity) and total (i.e.
both strain and stress singularities) modelling on the ac-
curacy of computation of the SIFs. The partial and total
modelling of singularities have been discussed in Sect. 4.

The most common singularity at the crack tip is the
square root singularity. There are many applications in-
volving normal crack terminating at a bimaterial interface,
kinked crack, etc., where the order of singularity can be
variable. In the case of a kinked crack the order of sin-
gularity varies with the knee angle (Williams, 1952); in the
case of the normal crack in a bimaterial the order depends
on the material combinations (Cook and Erdogan, 1972).
A large number of elements are available in the FEM (e.g.,
Tracey and Cook, 1977) to model the ®eld around such a
crack tip. Relatively special boundary elements which can
help to model the ®eld either partially or fully is lacking.
The simulation of variable order singularities is reviewed
in the Sect. 4.

Neighbouring singularities come up in a domain if there
is a small crack, or a large crack surrounded by a number
of micro- or small cracks or a zigzag crack. The most
obvious approach to tackle such cases is to employ a large
number of re®ned elements in the neighbourhood of the
crack tips. It has been shown in the FEM that the most
challenging and attractive way (e.g. Maiti, 1992a) to handle
the situations is to employ the multipoint singularity ele-
ments. The related investigations for simulation of multi-
point singularities to solve crack-crack interaction
problems are also reviewed.

Some of the advances in the BEM has bene®ted from the
earlier advances in the FEM. So a frequent references to
the latter is in order.

2
BEM applications to fracture mechanics
Some of the typical problems that come up in this appli-
cation are brie¯y discussed in the following. A very useful
discussion is also provided by Cruse (1997).

2.1
Degeneracy of boundary integral equation (BIE)
The BEM is ®rst applied to problems of fracture mechanics
by Cruse (1969). The early results pertain to problems with
limited bending. It is reported that, through a piecewise
constant modelling of the boundary displacements, it is
possible to capture the essential nature of the crack
opening behaviour but there is an error which can be as
high as 10±20% (Cruse, 1997).

The BIE formulation for a fracture mechanics problem
concerns with a geometry for which there are two surfaces

in close proximity and across which the displacements are
discontinuous. The BIE is found to degenerate for such
situations (Cruse, 1972). In the case of modelling of mixed
mode problems by the BEM a close proximity of nodes on
the two crack edges, the displacement BIE degenerates to a
singular form. The effective numerical strategy that is
suggested to overcome this limitation uses multidomain or
subregion modelling. The ®rst use of a multidomain BEM
is reported by Lachat and Watson (1976). In this approach
the domain is broken into number of subdomains by ex-
tending the crack edges/surfaces through the body arti®-
cially (Fig. 1). The ®rst true multidomain fracture
mechanics analysis for non-symmetric bodies has been
reported by Blandford et al. (1981).

In the multidomain or subregion method, the two edges
of a crack are associated with the two domains (Fig. 1b).
The domains are connected through an interface. Solution
of this type of a problem requires a special handling of the
nodes on the common interface as they do not have any
prescribed displacement (or temperature in a heat con-
duction problem) or traction (or temperature gradient).
Two additional conditions are imposed at each of these
nodes to arrive at a solution. These include a condition of
the continuity of displacements (or temperatures) and

Fig. 1a±c. Edge crack under thermal load. a Geometry. b Mesh
and c Variation of SIF due to thermal shock with time (Katsareas
and Anifantis, 1995)
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balance of tractions (or temperature gradients). Each of
the subdomain is modelled separately by the BEM. The
two systems of equations are then combined using the
constraint conditions at the common nodes. Katsareas and
Anifantis (1995) have solved an edge crack (Fig. 1a) under
mode II thermal loading using the subregion technique.
The plate is divided into two domains I and II connected
through a common interface (Fig. 1b). The two crack
edges are considered in separate domains.

The subregion technique can be adapted to solve
problems of stick contact, Coulomb friction slip contact,
interference contact, etc. As has been pointed out by Cruse
(1997) the real shortcoming of this method is the need
to create arti®cial edges/surfaces extending from the
original crack tip to the physical boundaries. Such a
discretization of the interior of the body is a problem when
one wants to employ the elastic fracture mechanics solu-
tion to predict the path of crack growth in a way that is not
dictated by an arti®cial boundary. A large number of
investigators, e.g. Blandford et al. (1981), Martinez and
Dominguez (1984), Karami and Fenner (1986), Ang (1986),
Katsareas and Anifantis (1995), Katsareas et al. (1998),
etc., have employed this technique to analyse mixed mode
crack problems.

2.2
Thermoelastic problem
The thermoelastic problems are concerned with the de-
termination of stresses caused by a temperature gradient
and/or external restraint imposed on the free expansion of
a body. The calculation of temperature and temperature
gradient is a prerequisite to study a thermoelastic prob-
lem. This temperature and temperature gradient are used
as an input for the computation of thermoelastic stresses.
The thermal loading is treated as a body force term. The
body force term is a volume/area integral which normally
requires the discretisation of the body into volume/area
elements. Rizzo and Shippy (1977) introduced a procedure
where the interior discretisation is not required and the
BIE can be expressed as an area/boundary integral, i.e. the
dimensionality can still be reduced by one. Evaluation of
SIFs due to thermal loading is available in Lee and Cho
(1990), Raveendra and Banerjee (1992), Raveendra et al.
(1993), Sladek and Sladek (1993, 1997), Prasad et al. (1994,
1996), Katsareas and Anifantis (1995), Katsareas et al.
(1998), etc.

2.3
Unique integral formulations to overcome BIE degeneracy
There are four ways of overcoming the degeneracy asso-
ciated with crack problems in the BIE. These are: multi-
domain formulation, dual boundary element method
(Portela and Aliabadi, 1992a; Guimaraes and Telles, 1994,
etc.), displacement discontinuity method (Sladek and
Sladek, 1986; Polch et al., 1987; Cruse, 1988; Balas et al.,
1989; Richardson and Cruse, 1998; etc.) and Green's
function technique (Synder and Cruse, 1975; Rudolphi and
Koo, 1985; Melnikov, 1995; etc.).

Portela and Aliabadi (1992a), Portela et al. (1992b),
Guimaraes and Telles (1994), Selcuk et al. (1994), Gray and
Paulin (1997), etc., have shown that the mixed mode crack

problems can be solved using hypersingular boundary
integral equations. This method is also known as the Dual
Boundary Element Method (DBEM). This does not require
any subdivisioning of the geometry. In the DBEM, the
singularity in the ®nal system of equations is avoided by
using two different equations for the boundary nodes on
the opposite crack edges. The displacement equation is
applied to one crack edge/surface and traction equation to
the other crack edge/surface. This method offers some
advantages over the subregion method in the study of
crack extensions. However the formulation is complex and
numerical integration is complicated. Raveendra et al.
(1993) have commented that in the DBEM the integral
equation becomes hypersingular and also the formulation
requires smoothness of the shape functions which can be
dif®cult in three-dimensional problems involving irregular
crack shapes.

In the displacement discontinuity (DD) method the
magnitude of discontinuity over the crack segment is ta-
ken as constant (Crouch and Star®eld, 1983). A set of such
discontinuities is applied over the crack. This approach
does not work as well when there is signi®cant bending. A
variety of regularisation methods have been developed to
eliminate the hyper- and Cauchy-singular terms in the
Somigliana stress identity to weakly singular and easily
integrable equations, e.g. Krishnasamy et al. (1992). In
most cases, the requirements of continuity of derivative of
the crack dislocations have been imposed. Though these
are non-standard requirements, they result in a reduced
computation and modelling simplicity for cracks. A
comprehensive discussion on displacement discontinuity
method, hyper- and Cauchy-singularity issues are avail-
able in Cruse (1997).

Another unique and powerful BIE formulation for
fracture mechanics problems is the exact representation of
the crack surface boundary conditions through the Green's
functions. Analytical Green's function methods are gen-
erally considered to be limited to two dimensional prob-
lems. The earliest numerical application of such a special
Green's function is given by Snyder and Cruse (1975). The
Green's function for the two dimensional crack problem
amounts to combining the usual Kelvin's fundamental
solution with additional terms in the kernels that result in
zero stresses on the crack due to the Kelvin point load. The
Green's function based formulation con®rms the inverse
square root behaviour of the stresses and strains near a
crack tip. Based on the analytical results it is possible to
take the limiting form of the strains times the square root
of the distance from the crack tip. The analytical limit is
proportional to the crack tip SIFs. This results in a path
independent integral for the mixed mode SIFs. The use of
Green's functions is discussed by several investigators, e.g.
Synder and Cruse (1975), Rudolphi (1985), Cruse and
Raveendra (1988), Li and Chudnovsky (1994), Melnikov
(1995), Chen and Hasebe (1997), etc.

2.4
Elastodynamic analysis
In elastodynamics, a knowledge of time dependent as-
ymptotic stress and displacement ®elds near the crack tip
and the associated parameters (e.g. KId, Ĵ, J0k, etc.) are
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important. Such information can help in understanding
the fast fracture of solids. As an example, Nishioka and
Atluri (1983) have proposed a method to evaluate J0k using
the complex potential method. Simple formulae for de-
termining SIFs from the complex potentials are also given.
The dynamic energy release rates are also calculated
through the crack closure integral.

Solutions in elastodynamics using BEM are usually
obtained by either the time domain method or transform
method (Laplace or Fourier) or the dual reciprocity
method. The time domain method is used by Nishimura
et al. (1988) to solve both two and three dimensional crack
problems. Dominguez and Gallego (1992) developed the
subregion formulation for 2-D crack problems. Sladek and
Sladek (1986) used the Laplace transform method. Chirino
and Dominguez (1989) have adapted the subregion anal-
ysis and the Fourier transform method. Fedelinski et al.
(1995) have developed a general formulation for modelling
elastodynamic crack problems in a single domain by the
DBEM. The DBEM is further extended by Wen et al. (1998)
to address 3-D problems subjected to dynamic loading.

3
Determination of SIFs
The BEM has found an extensive application for an eval-
uation of the SIFs. The notable contributions towards the
evaluation of the SIFs through the BEM are due to Cruse
and Buren (1971), Cruse (1972, 1978), Cruse and Wilson
(1978), Tan and Fenner (1978, 1979) in the seventies.
Blandford et al. (1981) have proposed a multidomain
formulation for the mixed mode problems. The BEM has
also been applied to axisymmetric crack problems (Bakr
and Fenner, 1985), fatigue crack growth (Gerstle et al.,
1988), three dimensional fracture problems (Perucchio
and Ingraffea, 1985), analysis of mixed mode crack prob-
lems using contact mechanics (Liu and Tan, 1992), surface
cracks (Zeng et al., 1993), dissimilar materials with inter-
face cracks (Yuuki and Xu, 1994), orthotropic delamina-
tion specimens (Ang et al., 1996), etc.

There are various methods, e.g. displacement method,
energy based methods, etc., for the evaluation of SIFs. The
commonly employed methods are discussed in the fol-
lowing.

3.1
Displacement and stress methods
This method is based on Irwin's classical solution for the
displacements in the vicinity of the crack tip. Watwood
(1969) and Chan et al. (1970) ®rst introduced it in the
FEM.

KI � v f �E; m�=pr �1�
where v denotes the normal displacement of the crack face
and f �E; m� is a function of elastic modulus E and Poisson
ratio m. This expression is valid as r ! 0. A similar ex-
pression can be written for KII involving crack sliding
displacements u. It is observed that the accuracy in this
method is dependent on the mesh re®nement near the
crack tip. A set of SIFs can also be determined considering
a number of nodes along a radial line emanating from the
crack tip. Employing these nodal values the SIF at r � 0

can be obtained through a graphical extrapolation. This is
the displacement extrapolation method (Chan et al., 1970).
The displacement method has been straightway adapted in
the BEM. This method is simple, versatile and more widely
used.

The SIF can also be obtained by the BEM based stresses
instead of the displacement.

KI � �rn
p

r�f �2�
where f is a constant and rn denotes the stress normal to
crack in the region ahead of the crack tip. The extrapo-
lation scheme too can be employed in this case to evaluate
the SIF.

Blandford et al. (1981) and Martinez and Dominguez
(1984) have shown that the accuracy of the results through
the displacement method is good though it depends on the
mesh re®nement near the crack tip. Katsareas and Anif-
antis (1995) have employed the displacement and traction
formulae to evaluate the SIFs due to a thermal shock. A
time domain BEM is employed for a problem subjected to
a thermal shock. An edge cracked ®nite plate (Fig. 1)
under thermal shock is considered by Katsareas and An-
ifantis (1995). Initially the plate is at zero temperature.
Suddenly the top and bottom edge temperatures are
brought to +1°C and )1°C respectively. The subregion
method is adapted to examine the case. The dimensionless
SIFs for plane strain conditions �K�II � KII�1ÿ m�=
�aE�hT ÿ hB��� are shown in Fig. 1c.

3.2
Stiffness derivative procedure
The strain energy release rate G, is the rate of change of
strain energy for an incremental change in crack length oa

G � oU

oa
� U2 ÿ U1

a2 ÿ a1
�3�

where U2 and U1 are the strain energies associated with the
crack lengths a2 and a1. A simple approach to determine G
is to perform two ®nite element analyses, one for the given
crack length and the other for an in®nitesimally extended
crack. The strain energies for the two con®gurations are
used to calculate G. The SIF is then obtained using the
relationship between G and K.

G can be also derived using the stiffness derivative ap-
proach (Parks, 1974), which eliminates the need for two
such ®nite element runs. One such procedure for both in-
plane and out-of-plane crack extensions is discussed by
Maiti (1990) (Fig. 2a). G can be expressed as the potential
energy release rate

G � ÿ op
ol
� 1

2
uT oK

ol
u �4�

where u and K are global displacement and stiffness ma-
trices and oK=ol is the change in global stiffness matrix per
unit crack advance. The crack advance for an in-plane or
an out-of-plane extension can be accommodated by rigidly
translating the nodes within and on the contour C0

(Fig. 2a), surrounding the crack tip by an in®nitesimal
amount ol, keeping all other nodal positions unaltered.
Hence DK can be determined by summing up the differ-
ences in the stiffness matrices of the elements lying be-
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tween the contours C0 and C1. G is then computed using
(4) after solving the set of equations Ku = F, which cor-
responds to the initial crack con®guration.

In an actual ®nite element implementation it is easier to
calculate 1

2u
TDKu as the difference in the total strain en-

ergies of the elements, which lie between the contours C0

and C1, before and after the shift Dl.
This method has not so far been employed in the BEM.

3.3
J-integral
One of the important method which has been used
extensively in evaluating the SIFs is based on J-integral
approach. J-integral (Rice, 1968) is de®ned as follows.

J �
Z

S

�W dxÿ tioui=ox�dS �5�

where S is a path (Fig. 2b) surrounding the crack tip, ti is
the traction vector along the outward normal to the con-
tour, ui is the displacement vector, x is the rectangular
coordinate aligned with the crack axis and W is the strain
energy density. The J-integral is equal to the strain energy
release rate (SERR) G in the LEFM regime. G can be cal-
culated from J for an in-plane or an out-of-plane crack
extension (Fig. 2b). The path-independence of J has been
exploited to evaluate the SIFs in both two and three
dimensional applications.

The J-integral has also been adapted in the BEM for the
evaluation of the SIFs. Karami and Fenner (1986) and
others have considered the J-integral approach to extract
the SIFs. In the case of a multidomain analysis the contour
for the J-integral passes through the two subdomains. The
results due to Karami and Fenner (1986) are shown in
Fig. 3. Figure 3b shows a typical discretisation and the
three circular contours considered for the evaluation of the
J-integral. The elements are located not only on the crack
faces but also on the line ahead of the crack, which is
considered to divide the domain into two subregions. The
normalised SIF �KI=r0

p
pa� based on J-integral and dis-

placement method, when the quarter point elements are
employed around the crack tip, are plotted (Fig. 3c)
against the relative crack length a/W. The SIF is also
evaluated using the quadratic elements around the crack
tip and the J-integral (Fig. 3c) to study the effect of shifting
of mid side nodes. Karami and Fenner (1986) have indi-

Fig. 2a±c. Arrangements to facilitate calculation of strain
energy release rate by a stiffness derivative procedure,
b J-integral and c modi®ed crack closure integral

Fig. 3a±c. Edge crack under tensile loading. a Plate geometry,
b mesh and circular contours for evaluation of J-integral and
c variation of SIF with crack length (Karami and Fenner, 1986)
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cated that an use of the quarter point elements around the
crack tip improves the accuracy of the results and the
J-integral approach is more accurate than the displace-
ment method.

For problems with thermoelastic load, the SIFs too can
be computed through the J-integrals (Prasad et al., 1994,
1996). Prasad et al. (1994) have used the DBEM and
J-integral approach to evaluate the SIFs. The traction and
¯ux equations are applied at nodes on one of the crack
edges (Fig. 4a). To satisfy the continuity requirements of
the hypersingular integrals in the traction and ¯ux equa-
tions, all the elements on the crack edges are modelled as
discontinuous elements (Fig. 4a). Calculation of the
J-integral is done by taking a circular contour surrounding
the crack tip (Fig. 4b). The contour S and domain A are
divided into an odd number of linear and triangular seg-
ments. The parameters required for the J-integral are
calculated at the internal points through the appropriate
steps of the BEM. The contour integral is obtained nu-
merically through the trapezoidal rule. The SIF of a rect-
angular plate with a centre crack (Fig. 4c) under two
different boundary conditions is calculated using this

approach. The boundary conditions for a pure mode I
problem are h � h1 on the crack and h � h2 around the
boundary. Second boundary conditions are pure mode II:
q = 0 on the crack; q = 0 at x = �W, jyj < L; and
h � �h2, jxj < W , y = �L. Here h1 � 0°C and h2 � 10°C.
The calculated SIFs (Prasad et al., 1994) are shown in
Table 1. The results are path independent and compare
well with other reported results.

In the J-integral approach additional computations of
displacement and traction at internal points is needed.
This stands a disadvantage of this method.

3.4
Modified crack closure integral
Another important methods of determining the SIF is
based on the crack closure integral (CCI) technique. The
CCI is ®rst introduced by Irwin (1958). In the FEM, the
adoption of the concept of CCI have contributed to a
signi®cant improvement of accuracy of the SIFs over the
computation based on the displacement method. The
method can be applied to problems of mixed mode loading
as well. This technique is ®rst adopted in the FEM by
Rybicki and Kanninen (1977). They described the method
considering a linear variation of the displacement ®eld
around the crack tip. Consequently, the element ensures a
constant strain ®eld. They termed the method as modi®ed
crack closure integral (MCCI) technique. Later it has
been shown by Krishnamurthy et al. (1985), Ramamurthy
et al. (1986), Sethuraman and Maiti (1988), Maiti (1990,
1992b) and Badri Narayan (1994) that crack line dis-
placement and stresses can be locally smoothed using the
computed nodal data. These smoothed ®eld can then be
employed to compute the crack closure work. This pro-
cedure gives the energy release rate, and hence the SIFs,
which have very high accuracy than the results based on
the displacement method. Chao and Atluri (1995) and
Chao et al. (1995) have presented the calculation of SIFs
for interfacial crack using virtual crack closure integral
(VCCI) and interfacial crack in dissimilar anisotropic
media using hybrid element and mutual integral. Recently,
Singh et al. (1998) have proposed an universal crack clo-
sure integral (UCCI) which is independent of the basic
stress analysis procedure.

For an in-plane extension (Fig. 2c) the ®nite element
equivalent of the MCCI (Maiti, 1990) is

Fig. 4. a Modelling of crack for analysis by DBEM. b Contour
for J-integral. c Plate with centre crack (Prasad et al., 1994)

Table 1. Comparison of SIFs for centre crack under mode I and
mode II thermal loading

a/W Stress intensity factor

Sumi et al.
(1980)

Prasad et al.
(1994)

Mukhopadhyay
et al. (1999b)

Mode I Mode II Mode I Mode II Mode I Mode II

0.1 0.2750 0.021 0.268 0.018 0.2697 0.0197
0.2 0.3499 0.053 0.347 0.054 0.3461 0.0527
0.3 0.4060 0.094 0.401 0.095 0.0933
0.4 0.4599 0.141 0.448 0.141 0.4489 0.1378
0.5 0.4900 0.188 0.491 0.190 0.4903 0.1855
0.6 0.5249 0.247 0.525 0.243 0.5241 0.2380
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G � Lt
b!0

1

2b
Hnunÿ2 � Hn�1un�1� �

� Lt
b!0

1

2b
Vnvnÿ2 � Vn�1vn�1� �

� GI � GII �6�
where b is the virtual crack extension, Hn, Vn, Hn�1, and
Vn�1 are the crack closure forces. unÿ2, unÿ1, vnÿ2 and vnÿ1

are the opening displacements. GI and GII are the com-
ponents of mode I and mode II energy release rates. The
nodal forces Hn, Vn, etc., are obtained from the element
nodal forces of element 1, 2, 3 and 4 (or 5, 6, 7 and 8) in
Fig. 2c. The opening displacements are taken approxi-
mately equal to those of nodes nÿ 1 and nÿ 2 corre-
sponding to the original crack. Thereby it is possible to
avoid a computation of the opening displacements for the
extended crack. For an out-of-plane extension of crack
also G can be evaluated in a similar manner (Maiti, 1990).

Recently, few investigators, e.g. Hucker and Farris (1993),
Farris and Liu (1993), Mukhopadhyay et al. (1998a, b,
1999a), etc., have adapted the MCCI based procedure in
the BEM for the evaluation of the SIFs. When a crack is
under remote mechanical loading, the unknown tractions
over the ligament gives rise to a nodal traction at the crack
tip node (Fig. 5). However, these crack tip tractions do not
contribute to any loading over the span OA (Fig. 5). For a
traction free crack edge, while evaluating

R
Ut dC, where U

is the fundamental solution for displacement and t is the
speci®ed traction, over the portion OA, it can be taken as
zero irrespective of the presence of the crack tip traction at
the crack tip. The crack closure work can be calculated
with a similar presumption; thereby the contributions
come only from the element OB on the ligament side. The
crack closure work is accordingly given by,

WI � 1

2

Z l

0

vt dx ; �7�

Fig. 5a±d. Illustration of crack
closure forces. a Remote load-
ing and b closure forces,
c crack edge loaded externally
and d closure forces and
external loading
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In the case of quadratic elements around the crack tip
(Fig. 5) the displacement variation over OA is given by

v � vjÿ1 ÿ 0:5 vjÿ2 n� �0:5 vjÿ2 ÿ vjÿ1�n2 �8�
where n is the natural coordinate. Similarly the traction
variation, which is also quadratic, has the form

t � tj�1 � 0:5�tj�2 ÿ tj�n� �0:5�tj�2 � tj� ÿ tj�1�n2

�9�
The mode I strain energy release rate GI

GI � �vjÿ1�tjc1 � tj�1c2 � tj�2c3�
� vjÿ2�tjc4 � tj�1c5 � tj�2c6��=60 �10�

where the coef®cients are de®ned below.

c1 � 2; c2 � 16; c3 � 2; c4 � 4; c5 � 2; c6 � ÿ1

A similar expression for GII can be obtained involving
x-component of tractions and displacements. Similar
correlations for constant element are available in Hucker
and Farris (1993) and for linear and quarter point ele-
ments in Mukhopadhyay et al. (1998a). In Farris and Liu
(1993) expressions for SERRs for three modes GI, GII and
GIII are available for 8-node quadrilateral BEs for appli-
cation in 3-D.

Loading on the crack edges come up due to explicit
mechanical loading, e.g., crack subjected to ¯uid pressure,
etc. In such a case, when a crack extends or an extended
crack is closed, it must be noted that there is an extra
loading on the newly formed crack edges on top of the
usual crack closure forces. This loading contributes to an
additional amount of work. A crack closure integral cal-
culation must therefore cognise this fact.

In the case of mechanical loading applied away from the
crack edges (Fig. 5a), the nodes jÿ 2 and jÿ 1 on the
crack edge AO are free of any load. As the crack extends up
to B, the newly formed crack edges are also load-free
(Fig. 5b). If the crack edges are subjected to, say, ¯uid
pressure (Fig. 5c), as the crack extends, the newly formed
crack edges are also subjected to the same ¯uid pressure
(Fig. 5d). The crack edges will therefore undergo an extra
opening. The crack closure work have two parts. One part
is due to the usual tractions tj, tj�1 and tj�2 and the other
part is due to ¯uid pressure p. For a mode I problem the
crack closure work is given by

WI � 1

2

Z l

0

vt dx� 1

2

Z l

0

vp dx �11�

where p is intensity of distributed crack edge normal load
and v is full opening displacement. The direction of this
load is positive, when it produces effects additive to that
due to the external load. The pressure loading can be of
uniform intensity or with a linear or quadratic variation.
Correlation of SIFs for linear, quadratic and quarter point
elements for crack edges subjected to constant `¯uid'
pressure are due to Mukhopadhyay et al. (1998b).

The treatment of thermal load in the MCCI based cal-
culations are given by Mukhopadhyay et al. (1999a). For a
mixed mode thermal stress problem the domain is to be
broken into a convenient number of subregions. At each
node of the common interface of the two adjacent regions

temperature and displacement are the same; temperature
gradients and tractions are equal and opposite. The crack
edges are loaded by thermal loads. As the crack tip ad-
vances, the newly formed crack edges give way to crack
opening but the traction conditions are not changed. Be-
fore and after the crack extension the temperatures and
gradients are the same. Hence the mode I crack closure
work for a crack subjected to a remote mechanical plus
thermal loading can be calculated as per Eq. (7). When a
problem involves remote as well as ¯uid pressure on the
crack edges/faces, on top of any thermal loading, as the
crack extends, the newly formed crack edges become
subjected to the same ¯uid pressure. The newly formed
crack edge will also be subjected to traction due to the
thermal loading. This traction remains unchanged
throughout the crack opening. So it will not contribute to
the crack closure work. The ¯uid pressure on the extended
crack edge only contributes an extra work to the closure
work. Thus, in the case of thermal loading over the whole
domain and ¯uid pressure on the crack edges the crack
closure work has two parts. One part is due to the closure
forces arising out of thermal loading and ¯uid pressure
and the other is due to crack edge loading p on the ex-
tended crack. The crack closure work can be calculated as
per Eq. (11). It must be noted here that, in this context,
there is a marked difference between the BEM and FEM. In
the FEM, as has been shown by Maiti (1992b), the work
calculation involves extra contribution from the thermal
loading too.

The accuracy of the MCCI based computation of SIFs
have been demonstrated by several examples by Hucker
and Farris (1993), Farris and Liu (1993) and Mu-
khopadhyay et al. (1998a, b, 1999a). One of the cases
studied by Hucker and Farris (1993) is presented here.
They have analysed a centre cracked plate under uniformly
distributed load employing constant elements (Fig. 6a).
The mode I SERR GI is determined using the near-tip
crack opening and tractions. They have compared the SIFs
based on displacement, stress and MCCI methods
(Fig. 6b). In the case of the displacement and stress
methods, the results are based on data obtained from two
elements off the crack tip. A considerable scatter is ob-
served in the case of displacement and stress methods
when near-tip displacement and stresses are used (Fig. 6c).
The MCCI based results are in excellent agreement with
the reference solution and the scatter is negligible even
though crack tip element size Da is 20±25% a. Farris and
Liu (1993) have demonstrated that for 3-D crack problems,
in general, adapting a ratio of the width of crack front
elements to the crack depth 1/10, the error in the SIF
evaluation is limited to �1.5%.

4
Singularity elements
The main dif®culty in modelling fracture problems arises
from the presence of a stress singularity at the crack tip.
Most of the singularity elements available in the general
purpose packages are based on the displacement formu-
lation. Some use the displacement variation in keeping
with the singularity, others get it through an appropriate
mapping or transformation.
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4.1
Square root singularity
Around an elastic crack tip there are both strain and
stress singularities. When the FEM is used to analyse a
crack problem, the satisfaction of strain singularity au-
tomatically ensures the stress singularity. In FEM, several
singularity elements, e.g. Hensell and Shaw (1975),

Tracey and Cook (1977), Barsoum (1977), etc., exist
which can incorporate the square root strain singularity.
The element due to Barsoum (1977), also known as
quarter point element, is based on mapping technique.
He has shown that a simple shift of the mid node to the
quarter position gives rise to a square root strain sin-
gularity at the neighbouring corner node. This element
has been extensively used and its performance has been
widely reported.

While using the analogue of the wellknown quarter
point ®nite element (Barsoum, 1977) in the BEM, the as-
sumption of a variation of displacement in proportion to
square root of distance from the crack tip does guarantee a
square root strain singularity. This cannot however auto-
matically ensure a square root traction singularity. Be-
cause of this the quarter point element is sometimes
termed as `strain singularity element' in the BEM. This
element therefore enables a partial modelling of the sin-
gularities.

The issue of partial and total modelling of singularities
have received a considerable attention in the BEM. A large
number of investigators, e.g. Cruse and Wilson (1978), Tan
and Fenner (1979), Xanthis et al. (1981), Blandford et al.
(1981), Nadiri et al. (1982), Weeen (1983), Martinez and
Dominguez (1984), Aliabadi et al. (1987, 1989), Gangming
and Yongyuan (1988a, b), Zang and Gudmundson (1990),
Chandra et al. (1995), Saez et al. (1995), Chen and Chen
(1995), Watson (1995), etc., have contributed in this di-
rection. Cruse and Wilson (1978), Tan and Fenner (1979),
Nadiri et al. (1981), etc., have used only the strain singu-
larity element and showed the improvement in the accu-
racy of the SIFs over the results through the nonsingular
elements. Blandford et al. (1981) introduced a special
crack tip element which ensured both the strain and
traction singularities. In this element, the mid-node is
shifted to the quarter point to ensure the strain singularity.
The displacements are expressed as the following (Fig. 7a).

ui � A1
i � A2

i

p
r � A3

i r �12�
The displacement variation is analytically correct for the
®rst terms of the in®nite series expansion. However if the

Fig. 6a±c. Centre crack under tensile load. a Geometry and mesh.
b Variation of SIF correction factor with crack length. c Effect of
crack tip element size (Da) on accuracy of SIFs for a/W = 0.5
(Hucker and Farris, 1993)

Fig. 7a, b. Singularity element due to Blandford et al. (1981).
a Traction singular quarter-point element. b Transition element
coordinate mapping
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same variation is assumed for the traction, it does not
demonstrate any singularity. This is because the function
consists of only

p
r and r terms. They introduced a new

function to de®ne traction variation.

ti � A1
i � A2

i

p
r � A3

i r
ÿ �p�l=r�

� B1
i =
p

r � B2
i � B3

i

p
r �13�

This type of a function is capable of giving the correct
traction variations in the vicinity of the crack tip �r ! 0�.
Thus the displacements and traction variations for the
elements around the crack tip are given by Eqs. (12) and
(13). The resulting boundary element is a `traction sin-
gular quarter point boundary element' (Blandford et al.,
1981). They have also demonstrated the usefulness of
transition elements. These elements (Fig. 7b) help to
extend the distance over which the presence of the crack
is felt. The three nodes of the transition element, desig-
nated by nondimensional variable s � 0, p, 2 have been
mapped on the n-axis. Lynn and Ingraffea (1978) have
shown that by placing the midpoint node at
p � ��1ÿ q� � p�q2 � 2q��=2, the correct stress singu-
larity is obtained after differentiation of the element
shape functions. The technique, i.e. multiplication byp�l=r�, used to transform the quarter point boundary
element into a traction singular quarter point boundary
elements, is not applicable to the transition element be-
cause this will affect the continuity of the traction mod-
elling. Blandford et al. (1981) have commented that the
transition element must be tested completely to ensure
their effectiveness.

Saez et al. (1995) have presented effective implementa-
tion for SIF computation of a mixed BE approach based on
the standard displacement integral equation and the
hypersingular traction integral equation. Expressions for
the evaluation of the hypersingular integrals along general
curved cracks quadratic line elements are presented. Dis-
continuous elements are used to satisfy the C1 continuity
requirement of the hypersingular integral equations. The
generality of the method allows for the modelling of
curved cracks and the use of straight line quarter point
elements. The elements may have any general quadratic
geometry de®ned by three nodes and the collocation
points can be set at any position within the element. It may
be noted that in the context of hypersingular formulation,
Saez et al. (1995) demonstrated that straight line quarter
point element can be used at the vicinity of the crack tip to
produce the

p
r displacement variation along the crack

Watson (1995) employed the Hermitian cubic shape
functions to characterise the singularity for straight and
curved cracks under a plane strain condition. The carte-
sian coordinates of an arbitrary point of the element Sb

(Fig. 8a) are the following.

xi�n� �
X2

c�1

Mc�n�xi�b; c� � Nc�n�si�b; c�� � �14�

where Mc�n� and Nc�n� are Hermitian cubic shape func-
tions, xi�b; c� are the cartesian co-ordinates of node c of
element Sb and si�b; c� is a vector tangent to Sb at node c.
Displacement and traction are given by

ui�n� �
X2

c�1

"
Mc�n�ui�b; c� � Ncwi�b; c�

�
X4

k�1

Wu
bcik�n�/k�b; c�

#

ti�n� �
X2

c�1

"
Mc�n�ti�b; c� � Ncvi�b; c�

�
X4

k�1

Wt
bcik�n�/k�b; c�

#
�15�

where ui�b; c� and ti�b; c� are displacement and traction at
node c of element Sb, wi�b; c� and vi�b; c� are derivatives
with respect to n of displacement and traction at that node,
Wu

bcik�n� and Wt
bcik�n� are singular shape functions. /1�b; c�

and /2�b; c� correspond to the dominant symmetric and
antisymmetric crack opening modes, whereas /3�b; c�
and /4�b; c� correspond to the subdominant symmetric
and antisymmetric crack opening modes. The singular
shape functions constructed from the terms of the eigen
function expansion are available in Watson (1995). They
extend over many elements to either side of the crack tip.
They are terminated at a corner of the boundary, the other
crack tip for a buried crack, or at a node for which the
angle between the tangent to the boundary and the limit-
ing tangent at the crack tip exceeds a threshold value. The
singular shape functions over three elements are shown in
Fig. 8b. The functions have zero value and zero derivative
at all the nodes except for the node at the crack tip.

Recently, Kebir et al. (1999) have analysed mixed-mode
crack growth in bolted joints using the DBEM. All the
boundaries are discretised with discontinuous quadratic

Fig. 8a, b. Singularity element due to Watson (1995). a Element
Sb on crack. b Extended singular shape functions
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BEs and the crack tip is modelled by singular elements that
exactly represent the strain ®eld singularity 1=

p
r. The

nodes are positioned at n � ÿ2=3, n � 0 and n � 2=3. The
shape functions of this element are (Kebir et al., 1999)

N1�n� � 3

2

�3ÿ �����
15
p �n� 2

�����������
1� n
p ÿ 2�����

15
p � ���

3
p ÿ 6

N2�n� � 3� �����15
p ÿ ���

3
p �nÿ 12

�����������
1� n
p � 2� �����15

p � ���
3
p �

2� �����15
p � ���

3
p ÿ 6�

�17�

N3�n� � 3

2

� ���3p ÿ 3�n� 2
�����������
1� n
p ÿ 2�����

15
p � ���

3
p ÿ 6

It is evident that the above formulation represents exactly
the strain singularity because oNl=dn � 1 at n � ÿ1. The
improper integrals that arise in the dual integral equations
are handled analytically. Aliabadi et al. (1987, 1989) pro-
posed a strategy, whereby an analysis is possible by re-
moving the stress singularity at the crack tip.

In a heat conduction problem too there are singularities
at the crack tip as has been discussed by Emery et al.
(1977) and Chao and Chang (1992). Emery et al. (1977) has
pointed out that when the ¯ow of heat is interrupted by
a free boundary, e.g. crack edge, the ®eld shows a singu-
larity near the crack tip. The near ®eld solution of tem-
perature around the crack tip is given by

/�x; y� � KTrn sin nh �18�
where n � 1=2, 1, 3/2 etc. Here /�x; y� denotes the tem-
perature and KT is the coef®cient of thermal singularity.
Obviously n � 1=2 indicates a singularity in o/=or and
heat ¯ux at the crack tip. When the analysis is performed
using the FEM, the temperature derivative (o/=or) sin-
gularity is only to be ensured. This may be achieved by
employing the quarter point elements around the crack tip
and one need not really bother separately about the sin-
gularity in the normal derivative/heat ¯ux (o/=on).
However when the BEM is employed, singularities in both
the radial derivative (o/=or) and normal derivative
(o/=on) are to be handled for a total modelling of the
singularity. In the BEM, an use of the quarter point ele-
ment can ensure a partial modelling, i.e. the singularity in
the temperature derivative is only taken care of. The effect
of simulating both the temperature derivative and heat
¯ux singularities on the computation of SIFs using the
BEM has been discussed by Katsareas and Anifantis
(1995), Prasad et al. (1996), Katsareas et al. (1998) and
Mukhopadhyay et al. (1999b). Katsareas and Anifantis
(1995) and Katsareas et al. (1998) have employed the
traction singular quarter point element along with multi-
region technique; Prasad et al. (1996) have adapted the
discontinuous quarter point element and the DBEM.

While evaluating the SIFs employing the special crack
tip elements, the displacement method is again the most
widely employed technique. As an example, Kebir et al.
(1999) have evaluated the SIFs from crack opening dis-
placements at collocation points extremely close to the
crack tip. Prasad et al. (1994) have used the J-integral. The
effect of partial and total modelling of singularities on

computation of SIFs through the MCCI method is pre-
sented in the case of mechanical and/or thermal loading by
Mukhopadhyay et al. (1999a). The computed SIF correc-
tion factors based on the MCCI method for a centre crack
under mode I and mode II thermal loads are compared
(Table 1) with the analytical solutions of Sumi and Kata-
yama (1980). It is also shown that the MCCI based com-
putation of SIFs offers ¯exibility in the selection of size of
the crack tip element. When the crack tip is surrounded by
traction/heat ¯ux singularity elements, there is a product
of two singularity terms. In such situations a higher order
of Gaussian quadrature (8 to 10) is recommended. In the
case of thermal stress problems there is a possibility of
cumulative effect of the partial or total modelling, since the
heat conduction analysis is followed by the stress analysis.

4.2
Variable order singularity
There are situations where the order of singularity at a
point in a given domain is variable. In the case of stress
analysis, a kinked crack is a typical example. As has been
shown by Williams (1952) the order of singularity at the
knee varies with the knee angle. Cook and Erdogan (1972)
have indicated that for a crack terminated at a bimaterial
interface, the order of singularity at the crack tip lying on
the interface varies with the material combinations and the
state of stress, i.e. plane stress or plane strain. Lo (1978)
and Cotterell and Rice (1980) have presented analytical
solutions for kinked cracks. There are a host of ®nite el-
ements, e.g. Tracey and Cook (1977), Stern (1979), Maiti
(1992c), etc., just to mention a few, which can help to
model such problems. These elements are based on either
the displacement or hybrid formulation (Pian et al., 1971,
Atluri et al., 1975). The hybrid formulation is mathemat-
ically elegant, permits direct computation of SIFs and
provides high accuracy even when a small number of such
elements is used around the crack tip. The displacement
formulation is more simple and widely used.

Wang and Chau (1997) have proposed a procedure for
calculating the interaction between cracks and holes. Sin-
gular interpolation function of order 1=

p
r are introduced

for the discretisation of the crack near the crack tip, such
that stress singularity can be modelled appropriately. The
singular integrands involved at the element level are in-
tegrated analytically. For each of the hole boundaries, an
additional unknown constant is introduced such that the
displacement compatibility condition can be satis®ed
exactly by the complex boundary function H(t), which is
a combination of the traction and displacement density
(Wang and Chau, 1997). An attractive feature of the
method is that the SIFs can be derived analytically in terms
of the crack unknown H(t). The interaction between a
straight crack and a circular hole and a kinked crack and a
circular hole is demonstrated. However while modelling
the kinked crack, a large number of elements (e.g. 130
linear elements) is employed. Wang and Chau (1997)
opine that this procedure can be adapted for solving elastic
bodies containing different number, distribution, orien-
tations and shapes of holes and cracks.

Mogilevskaya (1997) has reported numerical modelling
of kinked cracks and 2-D smooth crack growth. He has
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adapted analytical formulae for calculation of the SIFs. The
displacement discontinuities (DD) involved in these for-
mulae are found from the numerical solution of a complex
hypersingular integral equation (CHSIE) for a piecewise
homogeneous plane with curvilinear cracks. One of the
examples solved by him deals with four kinks under
biaxial stress (Fig. 9a). The main crack is represented by
four boundary elements and each kink is represented by
one element. The computed SIF correction factors are
observed by him to be in good agreement with the refer-
ence solutions. Another example considered by Mogi-
levskaya deals with a tension of a plane with a kinked
crack emanating from a circular hole (Fig. 9b). Two cases

of loading uniaxial and biaxial are considered. The nor-
malised SIFs are compared with the reference solutions
from Murakami (1987) in Table 2. He has indicated that
the CHSIE method gives reliable SIFs.

Recently Mukhopadhyay et al. (1999c) have proposed
two special BEs which can model variable order singu-
larities. The element, which models only the strain (radial
temperature derivative, o/=or) singularity is termed as the
Variable Strain Singularity (VSS) element. Similarly, the
element which incorporates both the strain and traction
(normal heat ¯ux, o/=on) singularities is termed as the
Variable Strain and Traction Singularity (VSTS) element.
These elements have been developed by a simple manip-
ulation of the element shape functions. The set of shape
functions for the VSS element are

N1 � 2c�ÿ�r=l�c � �r=l�c�1� � �r=l�
N2 � 2c�1��r=l�c ÿ �r=l�c�1� �18�
N3 � 2c�ÿ�r=l�c � �r=l�c�1� ÿ �r=l� � 1

These shape functions ensure a slope of in®nity at one end
node of interest. The shape functions also ful®l the rigid
body and constant strain criteria. This element partially
models the variable order singularity; it ensures a strain
singularity as r ! 0, but not the traction singularity. To
model the singularity behaviour totally, separate shape
functions are needed to incorporate the variable traction
singularity. A set of such shape functions are given below.

M1 � 2c��l=r�1ÿc ÿ �r=l�c� � 2�r=l� ÿ 2

M2 � 2c��l=r�1ÿc ÿ �r=l�c� �19�
M3 � 2c�ÿ�l=r�1ÿc � �r=l�c� � 1

These shape functions are obtained with the help of the
derivatives of the set of shape functions (18). A simulta-
neous representation of displacement and traction ®elds
by Eq. (18) and Eq. (19) respectively gives a VSTS ele-
ment. This can perform total modelling of variable order
singularities.

4.3
Neighbouring singularities
The presence of microcracks can severely affect the stress
concentration around a macrocrack. Studying the effect

Fig. 9. a Variation of SIF with angle a for crack with four kinks.
b Kinked crack emanating from circular hole (Mogilevskaya,
1997)

Table 2. SIF correction factor
for a kinked crack emanating
from a circular hole in a plane

a/R SIF correction factor Y

Isida et al. (1984) Mogilevskaya (1997) Mukhopadhyay et al. (1999d)

YI YII YI YII TESS TESTS

YI YII YI YII

Uniaxial tension
0.1 2.0920 )1.0340 2.0940 )1.0465 2.1173 )1.0532 2.1341 )1.0545
0.2 1.8030 )0.8660 1.8065 )0.8757 1.8277 )0.8744 1.8389 )0.8733
0.5 1.3140 )0.6240 1.3175 )0.6319 1.3085 )0.6192 1.3218 )0.6179
1.0 0.9700 )0.5060 0.9736 )0.5084 0.9502 )0.4964 0.9551 )0.4975

Biaxial tension
0.1 1.4930 )0.7540 1.4937 )0.7628 1.5136 )0.7674 1.5210 )0.7691
0.2 1.3620 )0.6750 1.3647 )0.6818 1.3767 )0.6827 1.3898 )0.6819
0.5 1.1270 )0.5310 1.1321 )0.5402 1.1102 )0.5417 1.1252 )0.5404
1.0 0.9450 )0.4190 0.9636 )0.4184 0.9259 )0.4271 0.9361 )0.4256
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of neighbouring singularities is crucial as in many
practical applications a macrocrack can be surrounded
by microcracks. Chudnovsky and Kachanov (1983),
Kachanov (1986), Raju (1987), Hori and Nemat-Nasser
(1987), Rubeinstein and Choi (1988), Dutta et al. (1990),
Lam and Phua (1991), Maiti (1992a), Chen and Hasebe
(1995), Mogilevskaya (1997), etc., have analysed the
problem of interaction of neighbouring singularities.
Depending on the location and size of the microcracks
this may lead to a `shielding' or `enhancement' effect on
the SIF at the main crack tip. The studies by Lam and
Phua (1991) is based on a singular integral equation
method which uses distributions of edge dislocations to
represent a crack in a mathematical model. Chudnovsky
and Kachanov (1983), Kachanov (1986), Hori and Nemat-
Nasser (1987), Rubeinstein and Choi (1988), etc., have
adapted analytical approaches to study crack-crack in-
teractions.

The interaction of neighbouring singularities can be
analysed routinely by employing a large number of ele-
ments in the FEM or BEM. Zang and Gudmundson (1990)
have solved contact problems of kinked cracks by the
BIEM. Based on the integral equation for the resultant
forces along a crack, a numerical method is developed for
the solution of two dimensional kinked crack problems
taking crack contact into account. One of the case studies
deals with a surface crack with two kinks (Fig. 10a). The
half-plane is subjected to a moving uniform pressure P0

over an interval 2c (c = 1) on its edge. They have disc-
retised the crack line using 70 linear elements and all to-
gether there are 150 degrees of freedom. They have also
studied the same problem using the FEM which requires
800 8-noded isoparametric elements. The computed dis-
placement jumps for P0/E = 1.2/205, m � 0:3 and d = 0 by
the proposed BIEM and FEM are in good agreement
(Fig. 10b). The computed SIFs (normalised with respect to
P0
p

pc) as a function of the loading position d are pre-
sented in Fig. 10c. The CPU time involved in the BIEM is
about 5 h for all 73 loading steps and about 182.5 h when
the FEM is employed.

Chen and Chen (1995) while studying multiple cracks
problems have commented that the multi-domain ap-
proach, as introduced by Blandford et al. (1981), may lead
to the formation of many arti®cial boundaries. As the
nodes on the ligament of the cracks are common to the
adjacent domains, the number of nodes will also increase.
They have opined that, in the DBEM, as proposed by
Portela and Aliabadi (1992a) and Portela et al. (1992b),
since the displacement integral equation also needs to be
established to model the outer boundary and the ®nite-
part integrals are evaluated directly, the dif®cult and time-
consuming task of computation increases, especially for
the problem with multiple cracks.

In the BIEM, Weaver (1977), Takakuda et al. (1985a),
Takakuda (1985b), Polch et al. (1987), Gray et al. (1990),
etc., derived a traction boundary integral equation to
analyse different type of cracks existing in an in®nite
body. The relative displacement derivative (Weaver,
1977; Polch et al., 1987) and relative displacement (Ta-
kakuda, 1985a; Takakuda et al., 1985b; Gray et al., 1990)
are taken as independent variables in the formulation.

However the analytical evaluation of the singular inte-
grals around the chosen singular points is laborious.
Ang (1986) has used both special Green's functions and
the multidomain method to solve a multiple crack
problem. Although this method avoids the discretisation
and integration along the crack surfaces, the application
is limited to the problem with the cracks specially dis-
tributed in an in®nite domain and simple loading con-
ditions. Recently Cruse and Novati (1992) employed the
traction boundary integral equation of Weaver (1977)
and Polch (1987) to deal with the multiple crack prob-
lem, but it is still limited to the analysis of an in®nite

Fig. 10. Edge crack with two kinks. a Geometry and loading.
b Crack displacement jumps. c SIFs as a function of load
positions (Zang and Gudmundson, 1990)
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body. Chen and Chen (1995) have developed a technique
suitable for two dimensional ®nite geometries with
multiple cracks. Based on the merits of the BEM, the
displacement integral equation is derived for the outer
boundary and the traction integral equation is estab-
lished for only one of the crack edges/surfaces. Since the
relative displacement on the crack edges/surfaces is ta-
ken as an independent variable in the formulation, the
total number of degrees of freedom and computational
efforts for multiple cracks are largely reduced. A virtual
boundary connected to one of the crack edges to con-
struct a closed integral path is employed for evaluating
the hypersingular integral. The constant and quadratic
isoparametric elements are considered to discretise the
closed integrals paths/crack edges and outer boundary
respectively. One of the examples studied by them is a
®nite plate with two inclined cracks (Fig. 11a). Because
of symmetry, only one half of the plate is analysed. To
compute the hypersingular integral, the crack surface is
discretised with 18 constant elements. The outer boun-
dary modelled by 20 quadratic elements is also shown
(Fig. 11a). The variation of computed SIFs FI

�FI � KI=r
p

pa� and FII �FII � KII=r
p

pa� with inclina-
tion angle h are shown in Fig. 11b and c. Figure 11b
shows that FI at the crack tip A is always higher than
that at the crack tip B due to the interaction between
the two cracks. As the angle increases (and therefore
two crack tips are closer), the difference increases.
Because of geometric symmetry FII at the crack tip A
is lower than that at the crack tip B. These results are
reported to be in good agreement with the ®nite element
solutions (Chen and Chen, 1995).

Chen (1995, 1997) has proposed numerical solution of
multiple crack problems by using hypersingular integral
equation. He has suggested a new quadrature rule to
numerically solve the hypersingular integral equation in
the case of multiple cracks in a structure. Several ex-
amples, e.g. two cracks in series, interaction of a hori-

zontal crack and an inclined crack, etc., are presented.
According to Chen the proposed approach give very
accurate results.

Recently, special BEs have been proposed by Mu-
khopadhyay et al. (1999d) which can simulate variable
order singularities at the two ends of the element. The
element, which models only the strain singularity at both
the ends is termed as the Two End Strain Singularity
(TESS) element. Similarly, the element which incorpo-
rates both the strain and traction singularities at both the
ends is termed as the Two End Strain and Traction
Singularity (TESTS) element. These elements have been
developed by a manipulation of the element shape
functions. Shape functions to give the singularity at the
two ends can be written separately as per Eq. (18). To get
a single set of shape functions to represent singularities
simultaneously at the two ends a simple superposition is
employed. A set of shape functions which can simulate
variable order strain singularities at both the ends is as
follows.

N1 � 2cÿ1�ÿ�r=l�c � �r=l�c�1�
� 2dÿ1�ÿ�1ÿ r=l�d � �1ÿ r=l�d�1� � 1ÿ �r=l�

N2 � 2c��r=l�c ÿ �r=l�c�1�
� 2d��1ÿ r=l�d ÿ �1ÿ r=l�d�1� �20�

N3 � 2cÿ1�ÿ�r=l�c � �r=l�c�1�
� 2dÿ1�ÿ�1ÿ r=l�d � �1ÿ r=l�d�1� � �r=l�

It may be noted that all the derivatives display rcÿ1 sin-
gularity at r � 0 and rdÿ1 at r � l. However, the traction
does not display any singularity. Such an element is an
example of the TESS element. To model both the strain
and traction singularities, separate shape functions are
needed to model the variable traction singularity. A set of
such functions is given below.

Fig. 11a±c. Plate with two inclined cracks. a Geometry and mesh. b Variation of normalised mode I SIF. c Variation of normalised
mode II SIF (Chen and Chen, 1995)

371



M1 � 2cÿ1��r=l�cÿ1ÿ�r=l�c�
� 2d�ÿ�1ÿ r=l�dÿ1��1ÿ r=l�d� � 1ÿ�r=l�

M2 � 2cÿ1��r=l�cÿ1ÿ�r=l�c�
� 2dÿ1��1ÿ r=l�dÿ1ÿ�1ÿ r=l�d�

M3 � 2c�ÿ�r=l�cÿ1��r=l�c�
� 2dÿ1��1ÿ r=l�dÿ1ÿ�1ÿ r=l�d�� �r=l�

�21�

The simultaneous representation of displacement and
traction by the shape functions (20) and (21) leads to a total
modelling of the variable order singularities at both the end
nodes. Mukhopadhyay et al. (1999d) have presented a
procedure to evaluate the SERR based on the MCCI method
in conjunction with these elements. The computed SIFs for
a kinked crack emanating from a circular hole (Fig. 9b) are
shown in Table 2. These special elements can cater for two
dimensional applications. There is a need to examine how
they can be extended to three dimensions to take care of
both straight and curved crack fronts.

5
Summary
The BEM has been used extensively for the evaluation of
the SIFs. Though the displacement method is a versatile
and most widely used technique, the J-integral and MCCI
based methods offer better accuracy. The J-integral
method has been applied in both the subregion approach
and the DBEM. In the MCCI based method, no additional
computation of displacement and traction as required in
the J-integral calculations, is necessary. The MCCI method
can be applied to various types of loadings. The accuracy
is good and the computed SIFs are less dependent on the
crack tip element size than the displacement method. How
this method can be applied in the DBEM requires some
investigations.

It is clear, that modelling of total singularities, i.e.
modelling of both strain and traction singularities simul-
taneously, help in improving the accuracy of the computed
SIFs. The quarter point element can model the singularity
partially. The quarter point traction singularity element
can help to do both the strain and traction singularities.
However this element can only handle the usual square
root singularity. To solve problems of variable singularity
or neighbouring singularities, a large number of conven-
tional BEs or a few special singularity BEs can be em-
ployed. The latter provides an alternative attractive
computationally. By a simple manipulation of the shape
functions of a 3-noded quadratic element, variable order
singularity can be obtained.
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