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SUMMARY

Two new boundary elements have been proposed for simulation of variable order singularities at the two
ends of an element in two dimensions. The "rst can model the variable order strain singularity at both the
ends of the element. The second element can do both the strain and traction singularities simultaneously.
The elements are useful for studying the interaction of singularities as in the case of multiple neighbouring
cracks in a domain. They are employed here for the computation of stress intensity factors (SIFs) in the
crack}crack interaction problems. To improve the accuracy of such computations further a modi"ed crack
closure integral (MCCI) based method for mechanical and/or thermal loading is presented. Examples of
mode I crack and mixed mode problems under mechanical loading are studied to illustrate the performance
of the proposed elements and the MCCI-based calculations. The e!ects of the order of Gauss quadrature
associated with such elements on the accuracy of the SIFs are also reported. Copyright ( 2000 John Wiley
& Sons, Ltd.
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INTRODUCTION

In an elastic media, singularity in the "rst derivative of "eld variable occurs due to the presence of
a crack. In practical applications there are many situations where a structure contains more than
one crack. This implies that there are as many singularity points in the structure as the number of
crack tips. When the cracks are situated in close proximity the neighbouring singularities will
interact. A macrocrack surrounded by small cracks or &microcracks' is a typical example. Many
investigators e.g. Chudnovsky and Kachanov [1], Kachanov [2], Raju [3], Hori and Nemat-
Nasser [4], Rubeinstein and Choi [5], Lam and Phua [6], etc., have shown that interaction with
a microcrack array can signi"cantly alter the stress intensity factor (SIF) at the main crack tip.



In general, the order of singularity at the tip of a crack in an elastic media is the square root
singularity. In the case of a kinked crack, there are neighbouring singularities at the knee and the
crack tip. The order of singularity at the crack tip is the square root singularity, but the order at
the knee varies with the knee angle [7]. If there are a number of small cracks surrounding the
kinked crack this gives rise to the problem of neighbouring singularities. A zigzag crack due to
stress corrosion cracking is another example which can also lead to a problem of neighbouring
singularities. In the case of heat conduction too, the problem of neighbouring singularities can
occur, for example, if there is an interruption of heat #ow through an isotropic media by a number
of cracks lying in close proximity. To address the related boundary element modelling two things
are important, modelling of variable order singularity and neighbouring singularities.

Many investigators [8}10] have proposed special "nite elements to model variable order
singularity because modelling of singularity has a signi"cant in#uence on the accuracy of results.
To model neighbouring singularities a large number of such elements are required. Dutta et al.
[11] and Maiti [12] proposed multicorner variable order singularity "nite elements to handle
such problems in a challenging manner. These elements [12] can handle up to three neighbouring
singularities. No attempt has so far been made to develop similar elements in the boundary
element method (BEM).

For a singularity "nite element based on the displacement formulation, the assumed displace-
ment "eld is required to ensure only the strain singularity. The stress singularity is automatically
guaranteed as stresses are calculated directly from the strains. In the case of heat conduction
analysis using such elements, the heat #ux singularity is automatically ensured since the heat #ux
is directly related to the temperature derivative. Thus there is no special e!ort required to ensure
singularity in the stress and heat #ux, respectively. In contrast, in the BEM, the displacement
(or temperature) and traction (or heat #ux) are treated as separate entities. The incorporation
of singularity in, for example, the displacement does not automatically guarantee the required
singularity in the case of traction. Special e!orts are required to ensure the total modelling of
singularities, i.e. simultaneous modelling of both strain and traction singularities.

The modelling of the singularities has received considerable attention in the BEM [13}22].
In 1981, Blandford et al. [13], introduced a special element, known as &traction singularity
element' for modelling of both the singularities. In the BEM, the most common square-root
singularity has been at the centre of focus and the problem of variable order singularity or
neighbouring variable order singularity problems has not received much attention. Only recently
the present authors [23] have proposed two variable order singularity boundary elements and its
usefulness in computing the stress intensity factors (SIFs) in two dimensions have been shown.
The "rst element, termed as &variable strain singularity' (VSS) element, ensures the variable order
strain singularity at the crack tip. The second element, called &variable strain and traction
singularity' (VSTS) element, helps to model both the variable order strain and traction singular-
ities simultaneously. The MCCI-based calculations are also presented to evaluate the SIFs from
crack tip displacements and tractions. These elements can be employed to solve the problem of
variable order singularities. The problem of modelling of neighbouring variable order singular-
ities remain open to investigations. This has provided the main motivation for the present study.
Developments of two such elements and their applications in crack}crack interaction problems
are presented.

Though the SIFs can be evaluated through the most common displacement method, the MCCI
technique o!ers better accuracy [24}27]. The use of MCCI in conjunction with the special
elements are examined. When these special crack tip elements are employed for any analysis the
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analyst is required to handle a product of two singularity terms for the evaluation of coe$cients
of the simultaneous equations. The integration of the singular kernels is performed through
the standard Gauss quadrature, e.g. Reference [28, 29]. As a result the order of Gauss quadrature
[30] plays a crucial role in the accuracy of the results. How does the order of Gauss quadrature
a!ect the accuracy of the SIFs is also examined in this paper.

ELEMENT FORMULATION

¹wo end strain singularity (¹ESS) element

A variable order singularity in the displacement derivative is obtained by manipulating the
element displacement shape functions of a quadratic or 3-noded element. This calls for an
adjustment so as to give rise to an in"nite slope in the "eld variable at the point of interest. A set of
such shape functions [23] are

N
1
"2c[!(r/l)c#(r/l )c`1]#1!(r/l )

N
2
"2c`1[(r/l)c!(r/l)c`1] (1)

N
3
"2c[!(r/l)c#(r/l )c`1]!(r/l )#1

where r is the distance from the crack tip, l is the length of the crack tip element and c is the
singularity parameter. This element is called VSS element. The shape functions ful"l the rigid-
body and the constant-strain criteria. The displacement and traction are represented by

u"N
1
u
1
#N

2
u
2
#N

3
u
3

(2)

t"N
1
t
1
#N

2
t
2
#N

3
t
3

(3)

When these elements are employed, the "eld variable (say, displacement) varies as rc, 0(c(1,
and the derivative of "eld variable (strain) varies as rc~1 the order of singularity is 1!c.
c"0.5 gives the common square-root strain singularity.

Shape functions to suit the singularity at the two ends can be written separately. To get a single
set of shape functions to represent singularities simultaneously at the two ends simple super-
position can be employed

N
1
"w

1
M2c[!(r/l)c#(r/l)c`1]#1!(r/l)N#w

2
M2d[!(1!r/l )d#(1!r/l)d`1]#1!(r/l)N

(4)

Here the order of singularities at the end nodes are (c!1) and (d!1). r is the distance measured
from the end node whose singularity parameter is c. For an equal bias w

1
"w

2
"0.5 can be

taken. Finally the two end strain singularity element shape functions are as follows (Figure 1(a))

N
1
"2c~1[!(r/l )c#(r/l )c`1]#2d~1[!(1!r/l)d#(1!r/l)d`1]#1!(r/l)

N
2
"2c[(r/l )c!(r/l)c`1]#2d[(1!r/l)d!(1!r/l )d`1] (5)

N
3
"2c~1[!(r/l )c#(r/l )c`1]#2d~1[!(1!r/l)d#(1!r/l)d`1]#(r/l)
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Figure 1. (a) Displacement and traction shape functions for TESS element and displacement shape
functions for TESTS element. (b) Traction shape functions for TESTS element.

At the ith node N
i
is unity and all other shape functions are zero. The derivatives of the shape

functions are
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It may be noted that all the derivatives display rc~1 singularity as rP0 and rd~1 as rPl. The
displacement "eld can now be written by adapting these shape functions and it gives rise to
a strain singularity of order (c!1) and one end (node 1) and (d!1) at the other end (node 3).
If the traction is expressed using these shape functions (Equation (5)), the traction does not
display any singularity. Such an element is an example of the TESS element. In the heat
conduction analysis, the TESS element ensures a variable order singularity at both the ends only
in the radial temperature derivative (L//Lr).

It can be easily veri"ed that + N
i
"1. This satis"es the rigid-body criteria. The proposed

element also ful"ls the constant strain criteria. This is checked in the following. Consider
a situation where the temperature of the element is uniformly raised by ¹ keeping the node 3 fully
restrained. This gives rise to displacements u

1
"la¹ and u

2
"la¹/2, where a is the coe$cient of

thermal expansion. The element strain, on substitution

Lu

Lx
"u

1

LN
1

Lx
#u

2

LN
2

Lx
"!a¹ (7)

The element therefore passes the constant strain requirement.

¹wo end strain and traction singularity (¹ES¹S) element

To model both the strain and traction singularities, separate shape functions are needed to model
the variable traction singularity. The required shape functions to cater for the traction singularity
can be similar to the derivatives of the shape functions (Equation (5)) associated with the TESS
element. A set of such shape functions is given below:

M
1
"2c~1[(r/l)c~1!(r/l )c]#2d[!(1!r/l )d~1#(1!r/l)d]#1!(r/l )

M
2
"2c~1[(r/l)c~1!(r/l )c]#2d~1[(1!r/l)d~1!(1!r/l)d] (8)

M
3
"2c[!(r/l)c~1#(r/l)c]#2d~1[(1!r/l )d~1!(1!r/l)d]#(r/l)

These shape functions are taken to have the following nodal values:
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Figure 2. Modelling of neighbouring singularities. (a) Two neighbouring cracks. (b) Main crack and an
array of microcracks. (c) Kinked crack. (d) Zigzag crack.

All the shape functions ensure an order of singularity (c!1) at node 1 as (rP0) and (d!1) at
node 3 as (rPl). The shape functions also satisfy &M

i
"1. The required variation of traction

over the element can therefore be presented by

t"t
1
M

1
#t

2
M

2
#t

3
M

3
(10)

A simultaneous representation of displacement "eld by shape functions (5) and the traction by
shape functions (8) gives a TESTS element. This element guarantees singularities in both radial
temperature derivative (L//Lr) and heat #ux (L//Ln) when employed in the heat conduction
analysis.

Adoption of the two new elements in an existing standard boundary element programme is
a straightforward matter. However, proper care must be taken in evaluating the terms of [H] and
[G] matrices, where [H] MuN"[G] MtN. Particularly, when both the load and "eld points are in
the special singularity element, the origins (r"0) are di!erent for the displacement and traction
"elds.

The two end singularity elements are compatible with the other two end singularity elements or
variable singularity elements. These elements are to be surrounded by similar elements and not
with ordinary quadratic elements. A few cases for possible applications are shown in Figure 2.
In the case of two collinear neighbouring cracks (Figure 2(a)) both span AB and CD can be
represented by the new elements. These elements are identi"ed by 2. One end singularity elements
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(1 in Figure 2(a)) can be considered at A and C. In the case of Figure 2(b) the elements can be used
repeatedly to advantage to cover spans AB, BC, CD, DE, EF and FG. An ordinary singularity
element can be employed at A and G. In the case of kinked crack (Figure 2(c)) the upper edge can
be easily modelled by one end singularity elements. The bottom edge can be done through 1 two
end singularity elements and 2 one end singularity elements. The arrangement of elements for the
case of zigzag crack (Figure 2(d)) is shown.

MCCI-BASED COMPUTATION OF SIFS

The accuracy of the SIFs can be improved if the calculations are done through the energy release
rates. One of the important methods to evaluate the strain energy release rate is Irwin's crack
closure integral (CCI). It is "rst adapted in the "nite element method (FEM) by Rybicki and
Kanninen [31]. They described the method considering a linear variation of the displacement
"eld (i.e. constant strain "eld) around the crack tip. They termed the method as modi"ed
crack closure integral (MCCI) technique. Later it has been shown by many investigators (e.g.
Ramamurthy et al. [32], Maiti [33], etc.) that crack line displacement and stresses can be locally
smoothed using the computed nodal data. These smoothed "eld can then be employed to
compute the crack closure work. Recently the e!ectiveness of this method is also demonstrated in
BEM [24}27] for linear, quadratic and quarter point elements around the crack tip. Here the
procedure is outlined when a combination of two end singularity element and variable singularity
element is used to analyse.

¹ESS and <SS element combination

In this combination the VSS element is employed to model the crack edge and the TESS element
is used to represent the ligament ahead of the crack tip. In the MCCI-based calculations the crack
closure work is evaluated taking note of the crack opening behind, and traction ahead of, the
crack tip as per the initially assumed variations [25}27]. For this combination the crack opening
displacement has a variation as per the VSS element (Equation (1)). The traction variation ahead
of the crack tip is given by Equation (5).
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2
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j
. v

j
and t

j
are the displacement and traction in the direction normal to the crack.

Remote mechanical loading. For this type of loading the mode I crack closure work is obtained
[25] through

=
I
"

1

2 P
l

0

vt dx (13)
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where l is the crack tip element size. For a symmetric crack con"guration v
j
"0. For other cases

displacements relative to the crack tip is to be considered. Combining (11) and (12)
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l
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where z"x/l. Finally the mode I strain energy release rate G
I
"=

I
/l is obtained
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where

c
1
"[!2cB (1#c, 1#c)#2cB (2#c, 1#c)#B (2, 1#c)]

c
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1506 N. K. MUKHOPADHYAY, S. K. MAITI AND A. KAKODKAR

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 2000; 47:1499}1522



A similar expression can also be derived for a mode II crack. That is
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where u is the crack sliding displacement. In de"ning a
i
's traction s

j
, s

j`1
and s

j`2
must be used in

place of t
j
, t

j`1
and t

j`2
, respectively.

Crack edge pressure loading

For #uid pressure acting on the crack edges, the crack closure work is di!erent

=
I
"

1

2 P
l

0

vt dx#
1

2 P
l

0

vp dx (19)

where p is #uid pressure acting to open a crack. Final expression for modes I and II energy release
rates are obtained in the form
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The constants a
i
's and c

i
's are already de"ned.

¹hermal loading. To analyse a thermal stress problem, the usual heat transfer analysis must
precede the stress analysis and relations (15) and (18) can be employed for the evaluations of
modes I and II strain energy release rates. Similarly in the presence of thermal and a #uid pressure
on the crack edges, relations (20) and (21) are to be employed. The thermal loading therefore can
be treated as any mechanical loading.

¹ES¹S and <S¹S element combination

In this combination crack opening displacement is approximated by VSTS element and traction
in ligament ahead of crack tip is by TESTS element. In this combination the traction is given by

t"a
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(x/l )c~1#a

2
(x/l)c#a

3
(1!x/l)d~1#a
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displacement "eld can be represented by Equation (11).
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Following the procedure given for the energy calculation of the TESS element, modes I and II
strain energy release rates for remote mechanical loading for this can be obtained. Explicitly
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where
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"[!2cB (1#c, c)#2c B(2#c, c)#B(2, c)]

c
2
"[!2cB (1#c, 1#c)#2cB (2#c, 1#c)#B (2, 1#c)]

c
3
"[!2c/(c#d)#2c/(1#c#d)#1/(1#d)]

c
4
"[!2c/(1#c#d)#2c/(2#c#d)#1/(2#d)]

c
5
"[!2cB (1#c, 2)#2cB (2#c, 2)#B (2, 2)]

c
6
"[!2c/(1#c)#2c/(2#c)#0.5]

c
7
"[2c`1B (1#c, c)!2c`1B (2#c, c)]

c
8
"[2c`1B (1#c, 1#c)!2c`1B (2#c, 1#c)]

c
9
"[2c`1/(c#d)!2c`1/(1#c#d)]

c
10
"[2c`1/(1#c#d)!2c`1/(2#c#d)]

c
11
"[2c`1B (1#c, 2)!2c`1B (2#c, 2)]

c
12
"[2c`1/(1#c)!2c`1/(2#c)] (25)

For a crack edge pressure loading and/or remote mechanical loading G
I
and G

II
are as follows:
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q)]/2 (27)

where the coe$cients a
i
and c

i
are given by Equations (22) and (25), respectively. In the presence

of thermal and/or mechanical loading modes I and II strain energy release rates can be evaluated
using the above equations appropriately.
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Evaluation of SIFs. The coe$cients c
n

are evaluated using

B(m, n)"! (m)! (n)/!(m#n) (28)

! (n)"Lim
j?=

j ! jn

n(n#1) (n#2) . . . (n#j)
nO0, !1, !2, . . . (29)

For a particular c, the gamma function is calculated using double-precision arithmetic and
j"50 000. It must be emphasised that the SIFs can be evaluated from G

I
and G

II
as their

correlation are known only for c"0.5. In other cases the MCCI-based relations can be employed
just to calculate the strain energy release rates.

CASE STUDIES

Five case studies, involving a macrocrack and neighbouring microcracks subjected to mode I and
mixed-mode mechanical loading, are presented. The computation is performed on a PC486 using
single-precision arithmetic. For all the case studies a plane state of stress has been assumed. Both
partial and total modelling of singularities have been considered. Partial modelling has been
obtained employing the combination of TESS and VSS elements. TESTS and VSTS elements are
used for total modelling of singularities.

Edge crack with collinear neighbouring microcrack. This example deals with an edge crack with
a collinear neighbouring microcrack in a #at plate under uniformly distributed load (Figure 3(a)).
The major dimensions are: plate width ="20 mm, ¸/="3 and a/="0.5. The distance
between the edge crack tip and the microcrack tip AB"d"0.05a. The selected material
properties are: elastic modulus E"1 MPa and Poisson's ratio l"0.3. The uniformly distributed
load p"10 MPa. The length of the microcrack BC (2l) is varied to obtain d/2l in the range 0.125
to 1 keeping d constant. Half of the plate is modelled (Figure 3(b)). AB is modelled with a two end
singularity element with c"0.5 and d"0.5. The element on the crack edge and terminating at
A is a variable singularity element. The microcrack 2l is simulated by a two end singularity
element with c"0.5 and d"0.5 when d/2l"1. For other values of d/2l it is covered by either
two variable singularity elements, or two variable singularity elements and one or more quadratic
elements. The element near C on the ligament side is another variable singularity element. Total
number of elements vary from 21 (d/2l"1) to 24 (d/2l"0.125). The size of crack tip elements
near A is 5 per cent a. The SIF at the main crack tip A has been evaluated employing the proposed
MCCI-based correlations (Equations (15) and (23)). This example has earlier been studied by
Chudnovsky and Kachanov [1], Kachanov [2] and Maiti [12]. The computed SIFs are
compared with Kachanov [2] and Maiti [12] in Figure 3(c) and Table I. In Figure 3(c) the SIF
correction factor >(>"K

I
/K

I0
) is plotted. Here K

I0
is 158.6 Nmm~3@2. The presence of the

microcrack causes an enhancement of the SIF at A for lower value of d/2l. As d/2l is increased
(d/2l"1) the e!ect is insigni"cant and the computed value reduces to the corresponding value in
the absence of the microcrack. The SIF is also computed using the displacement method at the
"rst and second element end nodes. These results are inferior to those based on the MCCI
calculations.
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Figure 3. (a) Edge crack with collinear neighbouring crack. (b) Boundary element mesh.
(c) Comparison of SIFs.

Table I. Comparison of SIFs for collinear neighbouring cracks.

SIF (N mm~3@2)

d/2l Maiti [12] TESS element TESTS element

0.125 225.520 225.678 236.259
0.200 200.920 202.358 210.848
0.333 181.860 183.222 189.905
0.500 171.900 173.025 178.632
0.667 168.277 173.024
1.000 162.630 162.984 167.280
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Table II. E!ect of variation of Gauss quadrature on SIFs for collinear
neighbouring cracks.

SIF (N mm~3@2)

Order of Gauss quadrature

d/2l 4 8 10 12 16

TESS element

0.125 226.433 225.715 225.679 225.672 225.678
0.200 202.994 202.402 202.363 202.355 202.358
0.333 183.786 183.271 183.231 183.224 183.222
0.500 173.557 173.076 173.040 173.029 173.025
0.667 168.815 168.340 168.300 168.286 168.277
1.000 163.465 163.036 163.002 162.991 162.984

TESTS element

0.125 253.775 240.646 238.686 237.525 236.259
0.200 226.729 214.954 213.139 212.055 210.848
0.333 204.480 193.790 192.094 191.068 189.905
0.500 192.533 182.418 180.783 179.781 178.632
0.667 186.658 176.818 175.193 174.187 173.024
1.000 180.446 170.978 169.402 168.421 167.280

The e!ect of variation of the order of integration on the SIFs have been shown in Table II. The
order is varied from 4 to 16. The associated Gauss point co-ordinates and weights are obtained
from Stroud and Secrest [30]. For the TESS element, the SIF almost stabilizes around 8. For the
TESTS element a higher order of integration is preferable.

The e!ect of modelling the two neighbouring crack tips by two end variable singularity element
and alternatively by one end singularity elements is examined. The two crack tips A and B can be
simulated by two one end variable singularity elements and the intermediate span can be covered
by one or more of quadratic elements. These arrangements are indicated by 2VSS#1QE or
2VSTS#1QE in Table III. It may also be simulated by two variable singularity elements. These
arrangements are indicated by 2VSS or 2VSTS. Obviously, the most attractive choice is to use
merely a two end singularity element. These schemes are indicated by 1TESS or 1TESTS. The
e!ect of such modelling on the computed SIFs are presented in Table III. Both partial and total
modelling have been considered. The "rst three columns indicate the partial case. The other three
represents to full modelling. The crack tip element size in the "rst case is 0.05a/3, in second case
0.025a and it is 0.05a in the last case when TESS/TESTS elements are employed. The computed
results for all the three sets are comparable. The advantage o!ered by the new elements is
therefore quite evident.

Edge crack with neighbouring stacked parallel cracks. The presence of a microcrack can cause an
&ampli"cation' of the SIF as illustrated in the previous example or &shielding' depending on its
location. This example deals with the latter (Figure 4(a)). The plate dimensions are="20 mm,
¸/="5 and a/="0.5. The size of the microcrack 2l"0.05a. The location of the microcrack is
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Table III. E!ect of modelling of two collinear neighbouring crack tips on SIFs.

SIF (N mm~3@2)

No. of elements employed to model two collinear neighbouring crack tips

d/2l 2VSS#1! 2VSS 1TESS 2VSTS#1! 2VSTS 1TESTS

0.125 223.514 222.732 225.678 228.657 229.115 236.259
0.200 200.168 199.644 202.358 204.580 204.973 210.848
0.333 181.284 180.939 183.222 185.034 185.341 189.905
0.500 171.458 171.187 173.025 174.810 175.040 178.632
0.667 167.017 166.768 168.277 169.894 170.070 173.024
1.000 162.266 162.040 162.984 165.111 165.218 167.278

! implies one quadratic element has been used in between two VSS/VSTS elements

Figure 4. (a) Edge crack with neighbouring stacked parallel cracks. (b) Boundary element mesh.
(c) Comparison of SIFs.
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Table IV. Comparison of SIFs for stacked parallel cracks.

SIF (N mm~3@2)

d/2l Maiti [12] TESS element TESTS element

0.5 113.480 108.762 106.786
1.0 125.830 120.798 118.248
1.5 137.445 136.350
2.0 144.250 145.170 145.095
2.5 149.391 149.964
3.0 150.100 151.958 152.956
4.0 154.805 156.288

assumed to cause a maximum shielding e!ect [2]. The in#uence of vertical distance h on the
shielding e!ect is examined. h/l is varied from 0.5 to 4 keeping l constant. The material properties
are the same as in the previous example. The plate is subjected to a uniform tension p"10 MPa.

Half of the plate is modelled. The subregion analysis is adapted (Figure 4(b)). The main crack
tip is modelled with a variable singularity element. The whole span of the microcrack 2l is covered
by a two end singularity element and the adjoining elements at the two crack tips are the variable
singularity elements. The total number of elements employed are 42. The size of the elements near
the crack tip A is 2.5 per cent a. The SIF is determined at the main crack tip A based on the MCCI
method. The problem has earlier been studied by Kachanov [2] and Maiti [12]. The results are
compared in Figure 4(c) and Table IV. In Figure 4(c) the variation of SIF correction factor
>(>"K

I
/K

I0
, where K

I0
"158.6 Nmm~3@2) is plotted. The shielding e!ect is pronounced as the

cracks are in close proximity, e.g. lower value of h/l. The e!ect reduces as h/l is increased. For
h/l'3 the SIF is almost equal to the SIF at the tip A of the maincrack in the absence of the
microcracks. In this case too the SIF is calculated based on the displacement method at the "rst
and second end nodes. These di!er considerably with the reference solutions. Particularly for low
value of h/l (h/l"0.5 and h/l"1), the computed SIF by the displacement method is more than
the reference solution by 50 per cent or so; as a result the shielding e!ect does not properly
emerge. Because of this poor accuracy they have not been included.

The e!ect of variation of order of integration on the computed SIFs are examined (Table V).
The order is varied from 4 to 16. Similar trend as in the previous example is observed.

Edge crack surrounded by three neighbouring microcracks. This example deals with an edge crack
surrounded by three neighbouring microcracks in a plate under mode I uniformly distributed
loading (Figure 5). Out of the three microcracks BC is collinear. The other two DE and FG are
symmetrically located with respect to the main crack. The major dimensions are: ="20 mm,
¸/="3 and a/="0.5. The horizontal distance from the main crack tip A to the three
microcrack tips B, D and F are d and d/a"0.02. The span of microcrack 2l"0.05a
(i.e. d/2l"0.4). The vertical distance of D and F from the crack edge is h and h/l"1. The crack
angle h is varied from 0 to 1803. The material properties are: E"210 GPa, l"0.3. The load
intensity p"10 MPa. Half of the plate is modelled due to the symmetry. The subregion analysis
is adapted. One region includes the main crack OA, the microcracks BC and ED. In fact, ED is
also present in the other region which includes the remaining part of the upper half plate. The
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Table V. E!ect of variation of Gauss quadrature on SIFs for stacked parallel cracks.

SIF (N mm~3@2)

Order of Gauss quadrature

d/2l Maiti [12] 4 8 10 12 16

TESS element

0.5 113.480 111.613 110.075 109.639 109.276 108.762
1.0 125.830 122.734 121.168 121.274 121.118 120.798
1.5 138.694 137.573 137.690 137.607 137.445
2.0 144.250 146.223 145.255 145.304 145.247 145.170
2.5 150.382 149.475 149.478 149.436 149.391
3.0 150.100 152.924 152.054 152.026 151.994 151.958
4.0 155.718 154.900 154.857 154.830 154.805

TESTS element

0.5 113.480 119.837 108.625 107.895 107.248 106.786
1.0 125.830 135.417 123.661 121.771 120.267 118.248
1.5 151.451 140.916 139.252 137.985 136.350
2.0 144.250 159.571 149.384 147.726 146.551 145.095
2.5 164.208 154.143 152.473 151.342 149.964
3.0 150.100 167.104 157.087 155.404 154.298 152.956
4.0 170.347 160.367 158.683 157.596 156.288

Figure. 5. Edge crack with three collinear cracks.

discretization employed is similar to the previous example. The span AB is covered by a two end
singularity element. The microcracks BC and DE are modelled using the similar elements. The
variable singularity elements are employed on the crack edge behind the main crack tip A, and in
front of the microcrack tips C and E. The size of crack tip elements at A is 2 per cent a.
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Figure 6. Variation of SIF correction factor > with crack angle for edge crack with three adjacent
microcracks (Figure 5).

This problem is studied employing an order of integration 16. The SIF correction factor
>(>"K

I
/K

I0
) is evaluated at A employing MCCI-based calculations (Figure 6). The SIF at

A due to the presence of only the collinear microcrack BC is also evaluated. This is 1.126 for the
TESS element and 1.16 for the TESTS element. The computed > considering all the three
microcracks show that DE and FG have an ampli"cation e!ect for h"0}753. The computed> is
maximum at h"153, though the variation is not signi"cant up to a value of h"303. As h*903,
the shielding e!ect begins. For h*1503, the K

I
is less than K

I0
. At h"1803, the K

I
is 0.8 K

I0
(i.e. >+0.8). All computed values of > are given in Table VI.

The e!ect of the vertical distance h on the SIF at the tip A is also examined. The problem is
analysed for h/l"2 by varying h and keeping all other parameters the same. The computed> are
presented in Figure 6 and Table VI. The in#uence of the microcracks DE and FG, as expected, are
less pronounced. The SIF correction factor> is again maximum at h+153 and the change in> is
less up to h"303. For this arrangement the shielding e!ect is observed for h+1053 and more.
However, the shielding e!ect is less in the previous arrangement. Further, for h"1803 the > is
more than 1; i.e. there is ampli"cation of the SIF.

Zigzag crack with microcrack. A zigzag crack may appear due to stress corrosion cracking. Here
a zigzag crack is considered with three kinks (Figure 7). At every knee point there is a singularity,
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Table VI. Variation of SIF correction factor > for edge crack with three
adjacent microcracks (Figure 5) with microcrack angle.

SIF correction factor > (>"SIF/>
0
)

h/l"1 h/l"2

h (deg.) TESS TESTS TESS TESTS

0.0 1.1801 1.2181 1.1702 1.2051
15.0 1.1821 1.2219 1.1770 1.2136
30.0 1.1763 1.2170 1.1754 1.2133
45.0 1.1644 1.2050 1.1678 1.2065
60.0 1.1489 1.1881 1.1567 1.1954
75.0 1.1320 1.1680 1.1442 1.1819
90.0 1.1150 1.1461 1.1318 1.1674

105.0 1.0863 1.1132 1.1185 1.1503
120.0 1.0540 1.0766 1.1021 1.1307
135.0 1.0151 1.0339 1.0838 1.1097
150.0 0.9651 0.9794 1.0630 1.0864
165.0 0.8994 0.9081 1.0422 1.0629
180.0 0.8051 0.8068 1.0235 1.0406

Figure 7. A zigzag crack with a neighbouring crack.

whose order depends on the included angle [7]. When the lengths of the kinks (AB, BC and CD)
are small the singularities will interact. The presence of a microcrack ahead will enhance the
SIF at the crack tip D. The main crack is an edge crack in a plate under uniformly distributed
load. The major problem dimensions are ¸/="3, a/="0.5, ="20 mm, h"453 and
h"5 per cent a. The length of the kinks (*a) AB, BC and CD are identical and *a"2 per cent a.
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Figure 8. E!ect of intercrack distance, microcrack size and vertical distance of microcrack on> for a zigzag
crack and a microcrack. Vertical distance for (a) h (b) h/2 and (c) 0.

The included angles at all the knees is 903. The length 2l of the microcrack EF is varied keeping
DE ("d) constant to obtain d/2l in the range of 0.125}1.0. The vertical distance h/*a"sin453.
The material properties are the same as in the previous example. The uniform tension
p"10 MPa. The full plate is modelled. Again subregion analysis is adapted. Each region consists
of 27 elements. The spans AB, BC and CD are covered by two end singularity elements. The
elements behind the crack tips A and E, and ahead of the crack tips D and F are variable
singularity elements. EF is a two end singularity element for d/2l"0.5 and 1. Otherwise EF is
modelled with variable singularity element.

This problem is studied employing an order of integration 16. The results on the SIF correction
factor > (>"K

I
/K

I0
, where K

I0
"158.6 Nmm~3@2) at the tip D are presented (Figure 8(a)). No

data are available in the literature for a comparison. The presence of the crack EF leads to an
enhancement of the SIF at D for low values of d/2l. As d/2l increases the e!ect reduces. For
d/2l"1 the SIF reduces to the corresponding value of the SIF without the presence of EF. Both
the modes I and II SIFs are signi"cant, though the mode I SIF is dominant.
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Figure 9. (a) Kinked crack emanating from a circular hole. (b) Boundary element mesh.

The in#uence of vertical distance h is studied. Two cases; h/*a"sin453/2 and 0 are considered.
A very similar discretization with a little readjustment of elements is employed. The variation
of the SIF correction factor > (Figure 8(b) and (c)) shows a similar trend. h does not seem to
have much e!ect on > though it increases slightly when EF is located closer to the main crack
tip A. For example, for d/2l"0.125, the increase in > as h/*a is varied from sin453 to 0 is
8 per cent.

Kinked crack emanating from circular hole. The problem geometry is shown (Figure 9). This type
of a problem has earlier been solved by Isida et al. [34] adapting body force method and
Mogilevskaya [35] employing complex hypersingular integral equation. The kink AB is at an
angle 453 and the angle (h) between AB and BC is 903 (Figure 9). The singularities exist at A and B.
The radius of the circular hole R is varied to obtain a/R in the range 0.1}1.0 keeping a constant.
The material properties are similar to that considered in the previous example. The subregion
analysis is adapted (Figure 9(b)). The span AB is covered by a two end variable singularity
element. The elements behind the kink tip A and ahead of the crack tip B are variable singularity
elements. The boundary of the circular hole is approximated by 12 quadratic elements for
a/R"0.1 and 0.2; and eight elements for a/R"0.5 and 1. The adapted mesh to model the
circular hole is relatively coarse here. As an example Mogilevskaya [35] has employed 80
elements for a/R"0.1 and 40 for a/R"0.2. Two cases of loading, uniaxial (p

x
"0, p

y
"10) and

biaxial (p
x
"p

y
"10) are considered.

The SIF correction factor >(>"K
I
/pJ(na) or K

II
/pJ(na)) are evaluated based on the

proposed MCCI method and presented in Table VII. The computed results are in good
agreement with the results of both Isida et al. [34] and Mogilevskaya [35] (Table VII). The
maximum di!erence from the results of Isida et al. is less than 2 per cent.
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Table VII. SIF correction factor for a kinked crack emanating from a circular hole in a plane.

SIF correction factor >

Isida et al. [34] Mogilevskaya [35] TESS TESTS

a/R >
I

>
II

>
I

>
II

>
I

>
II

>
I

>
II

Uniaxial tension

0.1 2.0920 !1.0340 2.0940 !1.0465 2.1173 !1.0532 2.1341 !1.0545
0.2 1.8030 !0.8660 1.8065 !0.8757 1.8277 !0.8744 1.8389 !0.8733
0.5 1.3140 !0.6240 1.3175 !0.6319 1.3085 !0.6192 1.3218 !0.6179
1.0 0.9700 !0.5060 0.9736 !0.5084 0.9502 !0.4964 0.9551 !0.4975

Biaxial tension

0.1 1.4930 !0.7540 1.4937 !0.7628 1.5136 !0.7674 1.5210 !0.7691
0.2 1.3620 !0.6750 1.3647 !0.6818 1.3767 !0.6827 1.3898 !0.6819
0.5 1.1270 !0.5310 1.1321 !0.5402 1.1102 !0.5417 1.1252 !0.5404
1.0 0.9450 !0.4190 0.9636 !0.4184 0.9259 !0.4271 0.9361 !0.4256

DISCUSSION AND CONCLUSIONS

A pair of two end variable order singularity boundary elements are introduced. The "rst element,
the two end strain singularity (TESS) element, partially models the singularity behaviour; it
models only the variable order strain singularity at both the ends of the element. The second
element, the two end strain and traction singularity (TESTS) element, can simulate the singularity
in both the strain and traction at both the ends of the element. The shape functions adapted to
impose the singularity in the variation of traction at both the ends are obtained from the
derivative of the shape functions for the displacement. Relations are given to compute the strain
energy release rate based on the modi"ed crack closure integral (MCCI) technique for both these
elements; SIFs can be evaluated for the case of square root singularity at the crack tip. From the
case studies it is evident that the computed results are in good agreement with the other published
results based on analytical method or FEM.

Since the terms of matrices [H] and [G] are obtained through Gauss quadrature the accuracy
of displacements and tractions, and hence the SIFs, depend on the order of the numerical
integration. For the case of TESS element the fundamental solution is multiplied by (r/l)c and
(1!r/l)d. The order of singularity in the fundamental solution for displacement depends on
[ln(1/r)](r)c] and [ln(1/r)](l!r)d]. However, in the case of fundamental solution for the
traction this depends on [(1/r)](r)c] and [(1/r)](l!r)d]. In the case of TESTS element, the
fundamental solution for traction is multiplied by (r/l )c and (1!r/l )d; thereby making the order of
singularity to depend on [(1/r)](r)c] and [(1/r)](l!r)d]. The fundamental solution of displace-
ment is multiplied by (r/l)c~1 and (1!r/l )d~1. The order of singularity here is guided by
[ln(1/r)](1/r)1~c] and [ln(1/r)](1/(l!r))d~1]. The order of singularity in the case of TESTS
element is more powerful than in the case of the TESS element. The computed traction near the
crack tip varies with the order of integration, though the displacements do not change much for
the TESTS element. Hence the SIF when computed by displacement method stabilizes for
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a moderate integration order. When calculations are performed through the MCCI technique,
a higher-order integration, 10 or more, is required in the case of TESTS element compared to
TESS element for the same degree of accuracy. In general, the TESTS element seems to have an
edge over the TESS element notwithstanding the requirement of a higher integration order.

Finally, the conclusions are as follows:

(i) The variable order singularity at two neighbouring points can be modelled using a single
boundary element. The element shape functions are obtained through a simple manipula-
tion of the shape functions of the parent 3-noded element shape functions. Two elements
have been suggested.

(ii) Partial modelling of strain singularity at both the ends of an element is possible through an
element like the TESS element whereas a full simulation of strain and traction singularities
simultaneously is possible employing the TESTS element.

(iii) Both the elements satisfy the rigid-body mode and the constant-strain criteria.
(iv) An integration order of 10 or so is preferable when adapting the TESTS element.
(v) The proposed elements o!er an attractive method of handling problems involving

crack}crack interaction.
(vi) The strain energy release rates G

I
and G

II
can be evaluated from the crack opening

displacements and tractions near the crack tip using the MCCI relations irrespective of the
order of singularity. The SIFs can be derived from G

I
and G

II
only in the case of square-root

singularity.
(vii) The presence of neighbouring singularities substantially in#uence the SIF at the tip of the

main crack. There can be an amplifying or a shielding e!ect depending on the locations and
sizes of the microcracks.

LIST OF SYMBOLS

a crack length
a
/

coe$cients of traction
B(m, n) Beta function

b
/

coe$cients of displacement
c, d singularity parameter
c
/

coe$cients used in MCCI calculation
E elastic modulus

G
I
, G

II
strain energy release rate in modes I and II

h length
K

I
, K

II
stress intensity factors

l crack tip element size/length of microcrack
N

i
, M

i
shape functions

p, q components of crack edge loading normal and parallel to crack
r distance from crack tip

s, t components of traction parallel and normal to crack
u, v components of displacement parallel and normal to crack
= geometric dimensions of domain

=
I
,=

II
crack closure work
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x, y Cartesian co-ordinates
> SIF correction factor

*a kink length
d distance from main crack tip to that of the neighbouring microcrack
h crack orientation with the x-axis
l Poisson's ratio
m natural co-ordinate
/ potential/temperature

!(m) Gamma function
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