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Abstract

Two boundary elements have been proposed for simulation of variable order singularities in two dimensions. The
®rst can model the variable order strain singularity near a crack tip and the second can simulate both the strain and
traction. These elements can be easily incorporated in a standard boundary element computer programme. The

elements are useful for computation of stress intensity factors (SIFs) in fracture mechanics. To improve the accuracy
of such computations further, a modi®ed crack closure integral (MCCI) based method for mechanical loading are
presented. Examples of mode I and mixed mode crack problems are examined to illustrate the performance of the

proposed elements and the MCCI based calculations. The e�ects of order of Gauss quadrature associated with such
elements on the accuracy of the SIFs are also reported. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are situations where the order of singularity at

a point in a given domain is variable. In the case of

stress analysis, a kinked crack is a typical example.

The order of singularity at the knee varies with the

knee angle [1]. Another example from the same area is

that of a crack terminated at a bimaterial interface.

The order of singularity at the crack tip lying on the

interface varies with the material combinations and the

state of stress, i.e. plane stress or plane strain [2].

There are a host of ®nite elements, e.g. Tracey and
Cook [3], Stern [4], Maiti [5], etc., just to mention a

few, which can help to model such problems. These el-
ements are based on either the displacement or hybrid
formulation. The hybrid formulation is mathematically
elegant, permits direct computation of stress intensity

factors (SIFs) and provides high accuracy, even when
a small number of such elements is used around the
crack tip. The displacement formulation is more simple

and widely used. In the standard boundary element
method (BEM) [6±8], the most common square root
singularity has been at the centre of focus and the pro-

blem of variable order singularity has not received, to
our knowledge, any attention. There is therefore a
need to develop elements to be useful in such appli-

cations. This paper mainly focusses on this issue.
When analysing an elastic crack tip stress±strain
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®eld using the ®nite element method (FEM) based on

the displacement formulation, the assumed displace-

ment ®eld is required to ensure only the strain singu-

larity. The stress singularity is automatically

guaranteed as stresses are calculated directly from the

strains. Thus, there is no need for any special e�ort to

ensure singularity in the stress. In contrast, in the

BEM, the displacement and traction are treated as

independent entities. The incorporation of singularity

in, for example, the strain does not automatically guar-

antee the required singularity in traction.

The most common type of singularity encountered

in stress analysis is the square root singularity. In

1976, Barsoum [9] introduced a special crack tip el-

ement, also known as ``quarter point element'', in the

FEM, to model such a singularity. When the same el-

ement is employed in the BEM, it is able to partially

model the singularity; the square root strain singularity

is only ensured but not the square root traction singu-

larity. The appropriate modelling of the singularities

has received a considerable attention in the BEM

[7,10±24]. In 1981, Blandford et al. [12], introduced a

special element for modelling of both the singularities.

This element is known as the `traction singularity el-

ement'.

Though the SIFs can be evaluated through the most

common displacement method, the modi®ed crack clo-

sure integral (MCCI) technique o�ers better accuracy

[25±28]. A procedure to calculate the SIFs based on

the MCCI technique is given in detail for remote load-

ing in [25,26], crack edge loading (e.g. ¯uid pressure)

in [27] and thermal loading in [28]. It is relevant to

note here that the conventional linear, quadratic and

quarter point elements are used in the Ref. [26±28].

The e�ects of partial and total modelling of singular-

ities while using the quarter point and traction singu-

larity elements on the MCCI based computation of

SIFs are discussed in [24]. Though the traction singu-

larity element permits a total modelling of the singular-

ities, this is helpful only for the case of square root

singularity. At present there is no boundary element

(BE) which can simulate variable order singularities

partially or totally. The present paper has derived

some motivation from this issue.

While the prime concern here has been the model-

ling of both the strain and traction singularities of

variable order simultaneously, the e�ect of partial

modelling of the strain singularity is also examined.

Two variable singularity BEs are proposed. The el-

ement, which models only the variable strain singular-

ity is termed here as Variable Strain Singularity (VSS)

element. Similarly, the element which incorporates

both the strain and traction singularities is termed as

Variable Strain and Traction Singularity (VSTS) el-

ement. The use of MCCI in conjunction with the VSS

and VSTS elements are also demonstrated.

When these special crack tip elements are

employed, the evaluation of boundary integrals

involves handling of product of two singularity terms.

In such situations the integration can be as usual per-

formed using the Gauss quadrature [6,8,29]. The

order of Gauss quadrature has an in¯uence on the

Nomenclature

a crack length
an coe�cients of traction
B(m,n) Beta function

bn coe�cients of displacement
c singularity parameter
cn coe�cients used in MCCI formulation

E elastic modulus
GI, GII strain energy release rates in modes I and

II

h length
KI, KII stress intensity factors
l crack tip element size
Ni,Mi shape functions

p, q components of crack edge loading normal
and parallel to crack

r distance from crack tip

sj, tj components of traction parallel and nor-
mal to crack

u, v components of displacement parallel and

normal to crack
W geometric dimensions of domain
WI, WII crack closure work

x, y Cartesian co-ordinates
Y SIF correction factor
Da kink length

d distance from tip of kink to tip of short
crack

y crack orientation with x-axis
n Poisson's ratio

x natural co-ordinate
G�m� Gamma function

N.K. Mukhopadhyay et al. / Computers and Structures 77 (2000) 141±154142



accuracy of the results. The degree of this in¯uence is
also elaborated.

2. Element formulation

2.1. Variable strain singularity (VSS) element

The usual shape functions for a 2D quadratic el-
ement are given by

N1 � x�xÿ 1�=2, N2 �
ÿ
1ÿ x2

�
and

N3 � x�x� 1�=2
�1�

where x is the natural coordinate. The displacement
and traction can be represented by the shape func-
tions.

u � N1u1 �N2u2 �N3u3 �2�

t � N1t1 �N2t2 �N3t3 �3�
When the ®eld variable (say, displacement) varies as
rc �0 < c < 1�, and the derivative of ®eld variable

(strain) as rcÿ1, the order of singularity is 1ÿ c: The
value c = 0.5 gives the common square root strain

singularity. To develop an element with singularity at
the crack tip, the element displacement shape functions
can be manipulated. The slope of all the shape func-

tions should be adjusted to give a value of in®nity at
the crack tip. At the same time the shape functions
should also ful®l the rigid body and constant strain cri-

teria. A set of such shape functions are given below.

N1 � 2c
�
ÿ �r=l�c��r=l�c�1

�
� �r=l�

N2 � 2c�1
�
�r=l�cÿ�r=l�c�1

�
N3 � 2c

�
ÿ �r=l�c��r=l�c�1

�
ÿ �r=l� � 1 �4�

Here r � lÿ x (Fig. 1a) and r=l � �1ÿ x�=2: The modi-
®ed shape functions have the following nodal values.

r=l � 0: N1 � 0, N2 � 0, N3 � 1

r=l � 1=2: N1 � 0, N2 � 1, N3 � 0

r=l � 1: N1 � 1, N2 � 0, N3 � 0 �5�
The derivatives of the shape functions are
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It may be noted that all the derivatives display rcÿ1

singularity at r � 0: The displacement ®eld can now be
written by adapting these shape functions. If the trac-

tion is expressed through the same shape functions, it
does not display any singularity. Such an element is an
example of the VSS element.

It can be easily veri®ed that
P

Ni � 1: This satis®es
the rigid body criteria. The proposed element ful®ls the
constant strain criteria. This is checked in the follow-

Fig. 1. (a) Displacement and traction shape functions for VSS

element; displacement shape function for VSTS element. (b)

Traction shape functions for VSTS element.
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ing. Consider a situation that the temperature of the
element is uniformly raised by T keeping the node 3

fully restrained. This gives rise to displacements u1 �
laT and u2 � laT=2, where a is the coe�cient of ther-
mal expansion. The element strain, on substitution,

@u

@x
� u1

@N1

@x
� u2

@N2

@x
� aT �7�

The element therefore passes the constant strain
requirement.

2.2. Variable strain and traction singularity (VSTS)

element

To model the singularity behaviour fully, separate

shape functions are needed to incorporate the variable
traction singularity. The new shape functions can be
formed with the help of the derivatives of the shape

functions associated with the VSS element. A set of
such shape functions are given below.

M1 � 2c
�
�l=r�1ÿcÿ�r=l�c

�
� 2�r=l� ÿ 2

M2 � 2c
�
�l=r�1ÿcÿ�r=l�c

�
M3 � 2c

�
ÿ �l=r�1ÿc��r=l�c

�
� 1 �8�

where r � x (Fig. 1b) and r=l � �1� x�=2:
The modi®ed shape functions have the following

nodal values.

r=l � 0: M1 � lim
r4 0
�l=r�1ÿc, M2 � lim

r4 0
�l=r�1ÿc,

M3 � lim
r4 0
�l=r�1ÿc

r=l � 1=2: M1 � 0, M2 � 1, M3 � 0

r=l � 1: M1 � 0, M2 � 0, M3 � 1 �9�
All the shape functions ensure an �1ÿ c� singularity at
the crack tip �r40). The required variation of traction

over the element can therefore be presented by

t � t1M1 � t2M2 � t3M3 �10�
A simultaneous representation of displacement and

traction ®elds by Eqs. (4) and (10) respectively gives a
VSTS element.

Adoption of the two new elements in an existing
standard boundary element programme is a straight-
forward matter. However, a proper care must be taken

in evaluating the terms of [H ] and [G ] matrices, where
�H �fug � �G �ftg: Particularly, when both the load and
®eld points are in the special singularity element, the

origins �r � 0� are di�erent for the displacement and
traction ®elds.

3. MCCI based computation of stress intensity factors

The SIFs at the tip of an elastic crack can be deter-
mined through a direct comparison of displacements
of the node closest to the crack tip. The accuracy of

the SIFs can be improved if the calculations are done
through the energy release rates. One of the important
methods to evaluate the strain energy release rate is

Irwin's crack closure integral (CCI). It is ®rst adapted
by Rybicki and Kanninen [30]. They described the
method considering a linear variation of the displace-
ment ®eld around the crack tip. Consequently the el-

ement ensures a constant strain ®eld. They termed the
method as modi®ed crack closure integral (MCCI)
technique. Later it has been shown by many investi-

gators (e.g. Maiti [31]) that crack line displacement
and stresses can be locally smoothed using the com-
puted nodal data. These smoothed ®eld can then be

employed to compute the crack closure work. Recently
the e�ectiveness of this method is also demonstrated in
BEM [25±28] only in relation to linear, quadratic and

quarter point elements around the crack tip.
The energy release rate associated with a crack

extension in a given mode is equal to the work done in
closing an in®nitesimal extended crack back to its orig-

inal length. For a crack subjected to remote mechan-
ical loading the crack closure work done can be
calculated.

WI � 1

2

�l
0

v t dx �11�

where, GI is the crack closure work in mode I, v is the

crack opening displacement, t is the traction and l is
the in®nitesimal virtual crack extension. The origin is
located at the crack tip and the axis x is oriented in

the direction of the crack extension. In the BEM, it
has been shown that an assumption of the crack open-
ing behind, and traction ahead of, the crack tip as per

initially assumed variations (e.g. quadratic for quadra-
tic element) helps in improving the accuracy [26]. l is
generally taken equal to the crack tip element size. The
mode I strain energy release rate (SERR) GI can be

obtained from the crack closure work �GI �WI=l). In
this method the component modes �GI and GII� can be
separated. The SIFs can be derived from the SERRs.

Close form relations to evaluate SIFs from the com-
puted displacements and tractions for linear, quadratic
and quarter point elements for remote mechanical

loading is available in [26].
Loading on the crack edges come up due to explicit

mechanical loading, e.g., crack subjected to ¯uid press-
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ure, etc. In such a case, when a crack extends or an
extended crack is closed, it must be noted that there is

an extra loading on the newly formed crack edges on
top of the usual crack closure forces. This loading con-
tributes to an additional amount of work. A crack clo-

sure integral calculation must therefore cognise this
fact. In such situations the crack closure work have
two parts. One part is due to the usual tractions and

the other is due to the ¯uid pressure p. For a mode I
problem the crack closure work is given by

WI � 1

2

�l
0

v t dx� 1

2

�l
0

v p dx �12�

The mode II crack closure work WII can be evaluated
in a similar way. Relations for the SIFs for linear,

quadratic and quarter point elements around the crack
tip are available in [27].

3.1. VSS element

In this element the opening displacement and trac-
tion variations are given by

v � b1�1ÿ x=l�c�b2�1ÿ x=l�c�1�b3�1ÿ x=l� � b4 �13�

t � a1�x=l�c�a2�x=l�c�1�a3�x=l� � a4 �14�
where b1 � �ÿ2cvjÿ2 � 2c�1vjÿ1 ÿ 2cvj �,
b2 � �2cvjÿ2 ÿ 2c�1vjÿ1 � 2cvj �, b3 � �vjÿ2 ÿ vj �, b4 � vj
and a1 � �ÿ2ctj�2 � 2c�1tj�1 ÿ 2ctj �,
a2 � �2ctj�2 ÿ 2c�1tj�1 � 2ctj �, a3 � �tj�2 ÿ tj � and a4 �
tj: The terms vj and tj are the displacement and trac-
tion in the direction normal to the crack.

3.1.1. Remote mechanical loading
For this type of loading the mode I crack closure

work is obtained from Eq. (11). The displacement and

traction are as per Eqs. (13) and (14). For a symmetric
crack con®guration, vj � 0: For other cases, displace-
ments relative to the crack tip is to be considered.

Combining Eqs. (11), (13) and (14)

WI � l

2

�1
0

�
�1ÿ z�czca1b1 � �1ÿ z�c�1zca1b2

� �1ÿ z�zca1b3 � �1ÿ z�czc�1a2b1

� �1ÿ z�c�1zc�1a2b2 � �1ÿ z�zc�1a2b3

� �1ÿ z�cza3b1 � �1ÿ z�c�1za3b2
� �1ÿ z�za3b3 � �1ÿ z�ca4b1

� �1ÿ z�c�1a4b2 � �1ÿ z�a4b3
	

dz �15�

where z � x=l: Finally, the mode I strain energy release
rate GI �WI=l is obtained.

GI �
�
vjÿ2�c1a1 � c2a2 � c3a3 � c4a4 � � vjÿ1�c5a1
� c6a2 � c7a3 � c8a4 �

�
=2 �16�

where

c1 �
�ÿ 2cB�1� c, 1� c� � 2cB�2� c, 1� c�
� B�2, 1� c��,

c2 �
�ÿ 2cB�1� c, 2� c� � 2cB�2� c, 2� c�

� B�2, 2� c��,
c3 �

�ÿ 2cB�1� c, 2� � 2cB�2� c, 2� � B�2, 2��,
c4 �

�ÿ 2c=�1� c� � 2c=�2� c� � 0:5
�
,

c5 �
�
2c�1B�1� c, 1� c� ÿ 2c�1B�2� c, 1� c�

�
,

c6 �
�
2c�1B�1� c, 2� c� ÿ 2c�1B�2� c, 2� c�

�
,

c7 �
�
2c�1B�1� c, 2� ÿ 2c�1B�2� c, 2�

�
,

c8 �
�
2c�1=�1� c� ÿ 2c�1=�2� c�

�
, �17�

and

B�m, n� �
�1
0

�1ÿ z�mÿ1znÿ1 dz �18�

A similar expression can also be derived for a mode II
crack. That is,

GII �
�
ujÿ2�c1a1 � c2a2 � c3a3 � c4a4 � � ujÿ1�c5a1
� c6a2 � c7a3 � c8a4 �

�
=2 �19�

where u is the crack sliding displacement. In de®ning
ai's tractions sj, sj�1 and sj�2 must be used in place of
tj, tj�1 and tj�2, respectively.

3.1.2. Crack edge pressure loading
For ¯uid pressure acting on the crack edges, the

crack closure work is as per Eq. (12). Following the

procedure as given in [27], ®nal expression for the
mode I and mode II energy release rates are obtained
in the form
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GI �
�
vjÿ2�c1a1 � c2a2 � c3a3 � c4a4 � c4p�

� vjÿ1�c5a1 � c6a2 � c7a3 � c8a4 � c8p�
�
=2 �20�

GII �
�
ujÿ2�c1a1 � c2a2 � c3a3 � c4a4 � c4q�

� ujÿ1�c5a1 � c6a2 � c7a3 � c8a4 � c8q�
�
=2 �21�

The constants ai's and ci's are already de®ned.

3.2. VSTS element

In this element the traction is given by

t � a1�l=x�1ÿc�a2�x=l�c�a3�x=l� � a4 �22�

where a1 � �ÿ2ctj�2 � 2ctj�1 � 2ctj �;
a2 � �2ctj�2 ÿ 2ctj�1 ÿ 2ctj �; a3 � 2tj and a4 �
�tj�2 ÿ 2tj �: The opening displacement ®eld can be rep-

resented by Eq. (13).
Following the procedure given for the energy calcu-

lation for the VSS element, the mode I and mode II

strain energy release rates for remote mechanical load-
ing for this can be obtained. Explicitly

GI �
�
vjÿ2�c1a1 � c2a2 � c3a3 � c4a4 � � vjÿ1�c5a1
� c6a2 � c7a3 � c8a4 �

�
=2 �23�

GII �
�
ujÿ2�c1a1 � c2a2 � c3a3 � c4a4 � � ujÿ1�c5a1
� c6a2 � c7a3 � c8a4 �

�
=2 �24�

where

c1 �
�ÿ 2cB�1� c, c� � 2cB�2� c, c� � B�2, c��,

c2 �
�ÿ 2cB�1� c, 1� c� � 2cB�2� c, 1� c�

� B�2, 1� c��,
c3 �

�ÿ 2cB�1� c, 2� � 2cB�2� c, 2� � B�2, 2��,
c4 �

�ÿ 2c=�1� c� � 2c=�2� c� � 0:5
�
,

c5 �
�
2c�1B�1� c, c� ÿ 2c�1B�2� c, c�

�
,

c6 �
�
2c�1B�1� c, 1� c� ÿ 2c�1B�2� c, 1� c�

�
,

c7 �
�
2c�1B�1� c, 2� � 2c�1B�2� c, 2�

�
,

c8 �
�
2c�1=�1� c� ÿ 2c�1=�2� c�

�
�25�

For a crack edge pressure loading and/or remote
mechanical loading GI and GII are as follows.

GI �
�
vjÿ2�c1a1 � c2a2 � c3a3 � c4a4 � c4p�

� vjÿ1�c5a1 � c6a2 � c7a3 � c8a4 � c8p�
�
=2 �26�

GII �
�
ujÿ2�c1a1 � c2a2 � c3a3 � c4a4 � c4q�

� ujÿ1�c5a1 � c6a2 � c7a3 � c8a4 � c8q�
�
=2 �27�

where the coe�cients ai and ci are given by Eqs. (22)
and (25), respectively.

3.3. Evaluation of SIFs

The coe�cients cn are evaluated using

B�m, n� � G�m�G�n�=G�m� n� �28�

G�n� � lim
j4A

j!jn

n�n� 1��n� 2� . . . �n� j�
n 6�0, ÿ 1, ÿ 2, . . .

�29�

For a particular c, the gamma function is calculated

using double precision arithmetic and j � 50,000: It
must be emphasised that the SIFs can be evaluated
from GI and GII as their correlations are known only

for c � 0:5: In other cases the MCCI based relations
can be employed just to calculate the strain energy
release rates.

4. Case studies

Three case studies, involving mode I or mixed mode
crack subjected to mechanical loading, are presented.

The computation is performed on a PC486 using single
precision arithmetic.

4.1. Pressurised crack normal to bimaterial interface

This example deals with a crack normal to, and ter-
minating at, a bimaterial interface (Fig. 2a). The singu-

larity at the embedded crack tip C is square root
singularity �c � 0:5). The order of singularity of crack
tip which lies at the bimaterial interface D is dependent

on the material combination and the state of stress [2].
Here the material combination, aluminium and epoxy,
is studied under a state of plane strain. The selected

material properties for aluminium are: elastic modulus
E � 68:95 GPa (107 psi) and Poisson's ratio n � 0:3:
For epoxy the same properties are: E � 3:102 GPa
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(0.45 � 106 psi) and n � 0:35: When the crack is

located in aluminium, the ratio of shear modulus m �
0:043 and c � 0:1752: In the reverse case m � 23:08
and c � 0:6619: The major domain dimensions are

a=W � L=W � 1=9 and W � 228:6 mm (9 in.). The
crack is subjected to a ¯uid pressure of p � 6:895 kPa

(1 psi).
Half of the plate is discretised because of the sym-

metry (Fig. 2b). The boundary integral equations are

considered separately for each material and they are
matched at the interface. Total 59 elements are

employed. The element size at C is 2%a. The sub-
sequent element sizes are 0.08a, 0.2a, etc. The mesh

near D is kept relatively ®ner. The crack tip element

size is 0.01a, the subsequent element sizes are 0.02a,
0.04a, 0.08a, etc. The problem is studied by employing
both the VSS and the VSTS elements. The variable

singularity elements are considered at both the crack
tips. However, for the crack tip C, c is 0.5 and for D

an appropriate value of c is speci®ed. This case has
earlier been studied by Cook and Erdogan [2] using
singularity integral equation. Tracey and Cook [3] and

Maiti [5] have reported results based on the special
variable order singularity ®nite elements.

The normalised crack opening displacement (COD)
v/a plotted as a function of distance from D is com-

Fig. 2. (a) Pressurised crack at bimaterial interface. (b) Boundary element mesh. (c) Comparison of crack opening displacements.
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pared with that of Cook and Erdogan [2] (Fig. 2c).

For m � 23:08, the CODs agree closely. In this case

the results by the VSS and VSTS are nearly the same.

For m � 0:043, the computed displacement near the

bimaterial interface is less than that of Cook and

Erdogan [2] solution for r=a < 0:01: However, for

r=a > 0:01, the agreement is again good. The di�erence

in the crack opening displacement (COD) for r=a <
0:01 is more in the case of VSS element than in the

case of VSTS element.

The SIFs at C have been evaluated using both the

displacement [3] and the MCCI based method. The

displacement of the second corner node instead of the

®rst corner node, if considered for the displacement

based calculations of the SIFs, gives as usual [26,27]

more accurate results. The MCCI based results are

obtained by Eq. (20). For D the SIF is calculated

based only on the displacement method. In case of

m � 0:043, the SIF correction factor Y �Y �
KI=p�pa�1ÿc� at D di�er from the Cook and Erdogan's

[2] solution by 8.75% (Table 1) when the VSS element

is employed. However, the di�erence reduces to

1.875% in the case of VSTS element. The di�erence

obtained by Tracey and Cook [3] and Maiti [5] are

9.97% and 2.08%, respectively. For m � 23:08, the

computed Y for both the elements match closely with

the results of Tracey and Cook [3]. For C, the calcu-

lated Y's �Y 0s � KI=p �
p

pa�� using displacement and

MCCI technique are shown in Table 2. In general, for

m � 0:043, the present results di�er with Cook and

Erdogan's [2] analytical solutions but are very close to

that of Tracey and Cook's [3] ®nite element solutions.

It is relevant to note that Tracey and Cook have
reported a di�erence of 12.17% with Cook and Erdo-
gan's solutions. For m � 23:08, the results are close to

the solutions of both Cook and Erdogan [2] and Tra-
cey and Cook [3]. The Y's are also evaluated at the
interface using ordinary quadratic elements (Table 1).

The computed Y for m � 0043 di�er from the refer-
ence solution by 12.92%. Therefore, it is clear that
modelling of the singularity improves the accuracy of
the results.

The in¯uence of order of Gauss quadrature [29] on
accuracy of Y, for m � 23:08 has been examined
(Table 3). Irrespective of the element the accuracy of

the SIF is not that signi®cantly a�ected by the order
of integration if the computation is based on the dis-
placement method. The accuracy is signi®cantly

a�ected by the order of integration in the case of
VSTS element when the computation is based on the
MCCI method; an order higher than 10 is generally
permissible. The MCCI method in conjunction with

the VSS element gives a very good accuracy with order
of integration even less than 10.

4.2. Kinked crack±short crack interaction under mode I

loading

A kinked crack in a ¯at plate under uniformly dis-
tributed load is studied (Fig. 3a). The plate dimensions

are a=W � 0:25 2
p

, h=W � 1:5 and W � 10 mm. Two
di�erent kink (AB) sizes of Da=W � 0:0125 and 0.025

Table 1

Comparison of SIF correction factor Y at interface crack tip for crack under ¯uid pressure by displacement method

m

Cook and Erdogan [2] Tracey and Cook [3] Maiti [5]

Present calculation

Quadratic VSS VSTS

0.043 0.048 0.0528 (9.97)a 0.049 (2.08) 0.0418 (ÿ12.92) 0.0438 (ÿ8.75) 0.0471 (ÿ1.875)
23.07 4.123 4.047 4.078 4.073 4.096

a % di�erence with Cook and Erdogan's results.

Table 2

Comparison of SIF correction factor Y at embedded crack tip for crack under ¯uid pressure by displacement method and MCCI

m

Cook and Erdogan [2] Tracey and Cook [3] Maiti [5]

VSS VSTS

Displacement MCCI Displacement MCCI

0.043 1.355 1.520 (12.17)a 1.490 (9.96) 1.461 (7.82) 1.497 (10.48) 1.479 (9.15) 1.527 (12.69)

23.07 0.882 0.890 (0.91) 0.876 (ÿ0.68) 0.854 (ÿ3.17) 0.892 (1.13) 0.859 (ÿ2.61) 0.904 (2.49)

a % di�erence with Cook and Erdogan's results.

N.K. Mukhopadhyay et al. / Computers and Structures 77 (2000) 141±154148



have been considered. The crack angle y is 458. The

material properties are: E � 210 GPa and n � 0:3: The
singularity parameter c is 0.674 at A and 0.5 at B.
There is no singularity at the re-entrant corner. The

plate is subjected to a uniform tension s � 10 MPa.
Subregion technique is adapted for the analysis. Each
region is modelled using 23 quadratic elements
(Fig. 3b). The elements surrounding A and B are the

variable order singularity elements of size Da=2: A
state of plane stress is assumed.
This problem is again studied using both the VSS

and the VSTS elements. The SIF correction factors Y,
Y � KI=s p

p �a� Da�, at B are computed through the
MCCI method (Table 4). This problem has earlier

been studied by Tracey and Cook [3] and Maiti [5].
The maximum di�erence from the reference solution
[3] is 0.402% for the VSS element and 0.968% for the
VSTS element. The ®nite element solutions of Tracey

and Cook [3] di�er by around 4%. The solutions pre-
sented by Maiti [5] employing variable order singular-
ity ®nite element di�er by 0.9%. The crack tip element

size used by Maiti [5] is Da=2: In this case also, the
VSS and the VSTS elements perform better than
ordinary quadratic elements (Table 4). The maximum

di�erence from reference solution is 2% when quadra-

tic elements are employed. The mode II SIF is, as

expected, negligible.
The e�ect of variation of order of integration on the

accuracy of SIFs for the kinked crack problem is

shown in Table 5. The order is varied from 4 to 16.
For the VSS element, the accuracy almost stabilises to
around 10. For the VSTS element the accuracy
increases as the order of integration increases. For this

case, a higher order integration is preferable.
The e�ect of interaction between a short crack and

a kinked crack �Da=W � 0:0125� has been studied

(Fig. 3c). A parametric study has been done by vary-
ing short crack length 2l and keeping Da and inter-
crack distance d constant. Da=2l is varied from 0.125

to 1. The mesh employed is similar to the previous
(Fig. 3b) one; each region is modelled by 27 elements.
The crack tip element sizes surrounding A and B are
Da=2: The distance d is modelled with two elements.

Four elements of uniform size are employed to model
the short crack in each case. The SIF correction fac-
tor Y at B is computed by both the VSS and the

VSTS elements through the MCCI technique
(Table 6). For a value of 2l=Da � 8, Y is nearly 47%
more than the corresponding value in the absence of

crack 2l. As this crack length (2l ) reduces, Y

Table 3

E�ect of order of Gauss quadrature on SIF correction factor Y for epoxy aluminium bimaterial strip (crack in epoxy)

Order of quadrature

Y � KI=p �
p

pa� at embedded crack tip by Y � KI=p�pa�1ÿc at interface crack tip by

VSS VSTS VSS VSTS

Displacement MCCI Displacement MCCI Displacement Displacement

4 0.8535 (ÿ3.233)a 0.8957 (1.549) 0.8579 (ÿ2.732) 0.9790 (10.995) 4.073 4.092

8 0.8535 (ÿ3.233) 0.8922 (1.162) 0.8581 (ÿ2.706) 0.9258 (4.969) 4.073 4.093

10 0.8536 (ÿ3.220) 0.8920 (1.131) 0.8583 (ÿ2.686) 0.9166 (3.924) 4.073 4.094

12 0.8536 (ÿ3.220) 0.8918 (1.115) 0.8585 (ÿ2.667) 0.9107 (3.254) 4.073 4.094

16 0.8536 (ÿ3.220) 0.8918 (1.106) 0.8587 (ÿ2.641) 0.9036 (2.448) 4.073 4.096

a % di�erence with Cook and Erdogan's results.

Table 4

Comparison of SIFs for kinked crack (Fig. 3a)

Da=W
Mode Reference solution [3] Tracey and Cook [3]

SIF correction factor Y by

Ordinary VSS VSTS

0.0125 I 1.542 1.480 (ÿ4.0)a 1.5736 (2.05) 1.5447 (0.174) 1.5555 (0.874)

0.0125 II 0.0 0.0015 0.0027 0.0024 0.0022

0.025 I 1.581 1.518 (ÿ4.0) 1.6123 (1.98) 1.5873 (0.402) 1.5963 (0.968)

0.025 II 0.0 0.0015 0.0077 0.0043 0.0016

a Di�erence with reference solution.
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decreases. When 2l � Da, Y reduces to the Y of the

kinked crack �Ykink).

The e�ect of d (Fig. 4) on Y has been examined. As

the inter-crack distance is reduced, the increase in Y is

more pronounced. As an example, for Da=2l � 0:125,
when d is reduced to Da=4, the increase in Y is around

120% of the Ykink: Even for Da=2l � 1, Y is more than

Ykink by about 18%.

4.3. Kinked crack±short crack interaction under mixed
mode loading

The problem is shown in Fig. 5a. The dimensions
are: a � 0:5h, h=W � 1:5, W � 20 mm and y � 308:
Other data are: E � 210 GPa, n � 0:3 and s � 10
MPa. The order of singularity at the crack tip B is the
usual square root singularity. The order of singularity

at the knee A changes with the knee angle y [1]. For
y � 308; c � 0:751975: Initially a kink length of Da �
1%a is considered and d � Da: A short crack of length

2l (CD) is considered at a distance d ahead of B in
same alignment (Fig. 5a). The short crack length 2l is
varied from Da=2l � 0:125 to 1 keeping d and 2l con-
stant. The subregion technique is employed and each

region is modelled by 27 elements. The crack tips A,
B, C and D are surrounded by the variable order
singularity elements. The size of crack tip elements at

A and B is Da=2: The inter-crack distance d is mod-
elled with two elements. Four elements of uniform size
are employed to model CD. The SIF correction factor

Y, Y � KI=s �
p

pa�, is computed at B by the VSS and
VSTS elements through the MCCI technique (Table 7).
No data is available in literature for a comparison in

this case. For 2l � 8Da, the mode I and mode II SIF
correction factors at B are 39% and 44% more than
the corresponding Ykink of Cotterell and Rice [32]. As

Fig. 3. (a) Kinked crack under mode I loading. (b) Boundary

element mesh. (c) Kinked crack-short crack interaction.

Fig. 4. E�ect of short crack on kinked crack under mode I

loading.
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Table 5

E�ect of variation of Gauss quadrature on accuracy of SIFs for kinked crack (Fig. 3a)

Reference solution [3] Order of quadrature

Element

VSS VSTS

Y % di�erence Y % di�erence

Da=W � 0:0125
4 1.552 0.644 1.697 10.053

8 1.546 0.229 1.601 3.848

1.542 10 1.545 0.199 1.585 2.788

12 1.545 0.186 1.570 1.845

16 1.545 0.174 1.556 0.874

Da=W � 0:025
4 1.595 0.870 1.745 10.402

8 1.588 0.453 1.647 4.185

1.581 10 1.588 0.427 1.631 3.128

12 1.588 0.413 1.616 2.218

16 1.587 0.402 1.596 0.968

Table 6

E�ect of kinked crack±short crack interaction on SIF correction factor Y at kink tip (Fig. 3c)

Da=2l SIF Correction Factor Y for

VSS VSTS

d � Da d � Da=2 d � Da=4 d � Da d � Da=2 d � Da=4

0.125 2.199 2.643 3.282 2.260 2.727 3.395

0.250 1.850 2.063 2.491 1.892 2.154 2.580

0.500 1.675 1.781 2.002 1.705 1.849 2.100

1.000 1.589 1.610 1.714 1.613 1.680 1.819

Table 7

E�ect of short crack±kinked crack interaction on SIF correction factor Y at kinked crack tip for mixed mode loading (Fig. 5a)

Da=2l

Mode

SIF correction factor Y for

VSS element VSTS element

Da � 4%a Da � 2%a Da � 1%a Da � 4%a Da � 2%a Da � 1%a

0.125 I 3.8017 3.6238 3.4653 3.9036 3.7197 3.5648

0.125 II 1.0846 1.0074 0.9554 1.1130 1.0365 0.9896

0.250 I 3.2579 3.1011 2.9982 3.3360 3.1774 3.0831

0.250 II 0.9103 0.8546 0.8198 0.9331 0.8797 0.8514

0.500 I 2.9463 2.8211 2.7413 3.0088 2.8847 2.8163

0.500 II 0.8168 0.7732 0.7456 0.8358 0.7951 0.7751

1.000 I 2.7978 2.6880 2.5795 2.8500 2.7424 2.6383

1.000 II 0.7732 0.7351 0.7015 0.7892 0.7542 0.7280
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the short crack length 2l reduces, Y decreases. For

2l � Da, Y at B approaches Ykink: The kink length is

varied to 2%a and 4%a and results are also presented

in Table 7. In these cases also d � Da and Da=2l is var-
ied from 0.125 to 1. The mode I and mode II Y's at B

increase by 52% and 62% from Ykink for Da � 4%a

and Da=2l � 0:125: For 2l � Da, the Y's are more than

Ykink by 11% and 15%, respectively.

The e�ect of a out of alignment short crack located

horizontally ahead of the kinked crack under mixed

mode loading had also been studied (Fig. 5b). Two

crack angles y � 158 �c � 0:85733� and 308 �c �
0:751975� are considered. Other data include Da �
2%a and d � Da: The short crack length 2l is varied

from Da=2l � 0:125 to 1. Similar nodal arrangements

as in the earlier case but with slight readjustment of
coordinates are employed. The variation of SIF correc-
tion factor Y at B is shown in Fig. 6. No data is avail-
able in this case for a comparison. The mode I SIF

correction factor Y is less in¯uenced by Da=2l than the
mode II correction factor. With increase in �Da=2l), Y
reduces. A similar trend is observed for all y: For a

case, y � 158 and 2l � 8Da, the mode I and mode II
correction factors are 35% and 48%, respectively more
than the corresponding SIFs at the kink tip in the

absence of the second crack.

5. Discussion

Two new variable order singularity boundary el-

ements are introduced. The ®rst element, the variable
singularity (VSS) element, partially models the singu-
larity behaviour. It models only the variable order

strain singularity near a crack tip. The second element,
the variable strain and traction singularity (VSTS) el-
ement, can simulate the singularity in both strain and

traction. These elements are easy to implement and do
not pose any problem in the system of equations or in
solving them. Relations are given to compute the SIF

Fig. 5. Kinked crack-short crack interaction under mixed

mode loading. (a) Short crack in alignment. (b) Short crack

out of alignment.

Fig. 6. E�ect of short crack-kinked crack interaction on SIF

correction factor at kinked crack tip for mixed mode loading

(Fig. 5b). (a) Variation of mode I SIF. (b) Variation of mode

II SIF.
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based on the modi®ed crack closure integral (MCCI)
technique for both these elements and these are useful

for the case of square root singularity at the crack tip.
In other cases they can be used to compute the strain
energy release rates GI and GII: Mode I and mixed

mode examples under remote mechanical loading and
crack edge loading are presented to demonstrate the
performance of the elements and the usefulness of the

MCCI technique. In general, the accuracy of SIFs cal-
culation by the proposed method is higher than the
displacement method. These elements have de®nite

edge over ordinary quadratic elements in modelling
variable order singularity and computation of SIFs.
The accuracy of the computed SIFs is dependent on

order of Gauss quadrature. For the case of VSS el-

ement the fundamental solution is multiplied by �r=l �c:
The order of singularity in the fundamental solution
for displacement is dependent on �ln�1=r� � �r�c]. How-

ever, in the case of fundamental solution for traction
this is dependent on ��1=r� � �r�c]. In the case of VSTS
element, the fundamental solution for traction is multi-

plied by �r=l �c; thereby making the order of singularity
to depend on ��1=r� � �r�c]. The fundamental solution
of displacement is multiplied by �l=r�1ÿc: The order of

singularity here is guided by �ln�1=r� � �1=r�1ÿc]. The
order of singularity in the case of VSTS element is
more powerful than the case of the VSS element. It is
observed that the computed tractions near the crack

tip vary with the order of integration, though the dis-
placements do not change much for the VSTS element.
Hence, the SIF when computed by displacement

method stabilises for a moderate integration order.
When calculations are performed through the MCCI
technique, a higher order integration, 10 or more, is

required in the case of VSTS element compared with
VSS element for same degree of accuracy. In general,
the VSTS element seems to have an edge over the VSS
element notwithstanding the requirement of a higher

integration order.

6. Conclusions

The following conclusions are drawn.

1. The variable order singularity can be modelled by a
boundary element through a simple manipulation of

its shape functions.
2. There is an improvement in accuracy of results,

when the crack tip singularities are appropriately

modelled.
3. The partial modelling though acceptable through an

element like VSS, for a better accuracy of the SIFs

the full simulation of both the strain and traction
singularities through the VSTS element is desirable.

4. Though the displacement is a versatile method for

the computation of the SIFs, a further enhancement
in the accuracy of the SIFs is possible through the

MCCI. The MCCI method can be utilised in all
cases to compute GI and GII: It can be helpful for
evaluation of the SIFs only in the case of square

root singularity.
5. The presence of a crack ahead of a principal crack

results in an substantial increase in the SIF depend-

ing on the inter-crack distance and its size.
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