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Abstract

A modified crack closure integral (MCCI) based computation of stress intensity factors (SIFs) for thermal loading
through boundary element method (BEM) is presented. Simple relations are given for the determination of stress
intensity factors (SIFs) using the BEM results for linear, quadratic and quarter point elements employed around the
crack tip. Examples of crack under mode I, mode II and mixed mode thermal and/or mechanical loading are
examined. The computed SIFs are compared wherever possible with solutions available in the literature. The
agreement is good. The effect of crack tip element size on the accuracy of results is reported. © 1999 Elsevier Science
S.A. All rights reserved.

1. Introduction

The stress intensity factors (SIFs) for thermal
problems can be determined through the
boundary element method (BEM) using the for-
mulation presented by Rizzo and Shippy (1977).
A number of studies involving thermal loading of
a crack, e.g. Lee and Cho (1990), Raveendra and
Banerjee (1992), Raveendra et al. (1993), Prasad
et al. (1994, 1996), Sladek and Sladek (1993,
1997), Katsareas and Anifantis (1995), etc. has

been reported. The thermoelastic boundary ele-
ment (BE) formulation coupled with either the
subregion analysis (Blandford et al., 1981), or the
dual boundary element method (DBEM) (Portela
et al., 1992) has extended the scope of analysis to
mixed mode fracture problems. The subregion
analysis is simpler than the DBEM and has been
applied by a number of investigators, e.g. Raveen-
dra and Banerjee (1992), Raveendra et al. (1993),
Katsareas and Anifantis (1995), etc. In the
DBEM, the singularity in the final system of
equations is avoided by using two different equa-
tions for the boundary nodes on the opposite
crack edges. For the thermoelastic crack prob-
lems, displacement and temperature equations are
specified on one crack edge and the traction and
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Fig. 1. Illustration of (a) crack under remote mechanical loading and thermal field and (b) crack closure forces.
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Fig. 2. Illustration of (a) crack under remote and crack edge mechanical loading and thermal field and (b) crack closure forces.
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flux conditions on the other as discussed by
Prasad et al. (1994, 1996). This method does not
require any subdivisioning of a given region and
offers some advantages in the study of crack
extensions.

After the BE analysis, displacement comparison
is commonly employed to evaluate the SIFs.
Blandford et al. (1981) and Martinez and
Dominguez (1984) have proposed special crack tip
elements to include the strain and traction singu-
larities simultaneously and improve the accuracy
of results through the displacement comparison.
The SIFs can also be computed via the evaluation
of J-integrals (Prasad et al., 1994, 1996). Inspired
by the success of modified crack closure integral
(MCCI) technique for the computation of the
SIFs with high accuracy in the finite element
method (FEM) (Maiti, 1992a), efforts have been
directed recently to exploit the MCCI to evaluate
the SIFs through BEM. Farris and Liu (1993),
Maiti et al. (1997), Mukhopadhyay et al.
(1998a,b) have shown the effectiveness of this
method for remote and/or crack edge loaded
problems in mode I and mixed mode.

The MCCI based computation of SIFs for ther-
mal and/or mechanical loading is introduced in
this paper. For the computation of displacements
and tractions the standard BE formulation is em-
ployed. The method of calculation of SIFs given

here is different from that of Raveendra et al.
(1993), Sladek and Sladek (1993) and Katsareas
and Anifantis (1995). Raveendra et al. (1993) and
Katsareas and Anifantis (1995) have used the
methods based on the comparison of displace-
ment and traction, while Sladek and Sladek
(1993) have employed a contour integral based
evaluation. In this paper, the SIF is determined
from the crack closure work done. The crack
closure work is computed through the MCCI. 2-D
case studies involving thermal and/or mechanical
loading in mode I, or mode II, or mixed mode,
are presented. In all the cases computations have
been performed employing separately linear,
quadratic and quarter point elements around the
crack tip.

2. Thermoelastic boundary element formulation

In any thermal analysis by the BEM, there are
two stages. In the first stage, the potential prob-
lem is solved to determine the temperature field.
In the second stage, this temperature field is used
as input to solve for the distribution of thermal
stresses. In this stage, the thermal loading is
treated as body forces (Rizzo and Shippy, 1977).
The corresponding boundary integral equation
(BIE) is as follows.

Fig. 3. Centre crack (a) mode I loading (b) mode II loading.
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Table 1
Comparison of stress intensity factor (SIF) for mode I centre crack

SIF (MPa, 
mm)a/w

Sumi and Katayama (1980) Maiti (1992b) Present method

Quadratic element Quarter point elementLinear element

KI % ErrorKI % Errora KI % Error

−0.983 0.016700.1 0.01739 0.01695 0.01684 −3.143 −3.9460.01722
−0.013 −2.9890.2 0.021470.02213 0.022130.02177 0.02139 −3.346

0.02867 −1.455 0.02782 −4.3800.4 0.02909 0.02799 0.02747 −5.580
0.03045 −1.7470.5 0.03099 0.03070 0.02997 −3.277 0.03138 1.242

0.03356 1.089 0.032570.6 0.03320 0.03294 −1.8910.03196 −3.738

a Errors are computed relative to the results of Sumi and Katayama (1980).
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where S denotes the surface and V is the volume.
Tij and Uij are fundamental solutions for traction
and displacement and u and t are displacement
and traction, respectively. The body force vector fj

can be expressed as gradient of a potential func-
tion f.

fj= −
aE

(1−2n)
(f

(xj

(2)

where a is the coefficient of thermal expansion, E
is elastic modulus and n is the Poison’s ratio. In
the event of a variation in temperature within the
body an extra term is to be included in the
boundary traction.

t j
tot= t j

mech+
aE

(1−2n)
fnj (3)

where t j
tot is the total traction, t j

mech is the mechan-
ical traction and the last term represents the extra
due to temperature field.

Using the Green’s second identity, the dimen-
sionality of the second integral on the right hand
side can be reduced by one. That is volume inte-
gral can be transformed into an area integral and
area integral into a line integral.

Bi=
&

S

Mif dS+
&

S

Nil dS (4)

where Mi and Ni are thermoelastic kernels associ-
ated with the temperature and temperature gradi-
ent respectively. Here l denotes the temperature
gradient.

3. Computation of SIFS using MCCI

For analysing a mixed mode thermal stress
problem through the subregion analysis the do-
main is to be broken into a convenient number of
subregions. At each node of the common interface
of the two adjacent regions temperature are the
same, and temperature gradients are equal and
opposite (Fig. 1a). Similarly the tractions at the
common interface nodes are equal and opposite.

Fig. 4. Effect of crack tip element size on accuracy for centre
crack under mode I thermal load.
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Table 2
Comparison of stress intensity factor (SIF) correction factor Y for mode II centre crack

a/w SIF correction factor Y

Maiti (1992b) Present methodSumi and Katayama (1980)

Linear element Quarter point elementQuadratic element

% ErrorYY % ErrorY % Errora

0.0196 −6.7619 0.0189 −9.78060.1 0.0210 0.0180 0.0188 −10.4366
−3.55020.0511−0.38570.2 0.0530 0.05280.0540 0.0523 −1.4076

0.0907 −3.50990.3 0.0940 0.0950 0.0922 −1.9356 0.0937 −0.3121
−4.73450.1343−1.56220.4 0.1410 0.13880.1410 0.1357 −3.7236

0.1870 −0.5174 0.18100.5 0.1880 −3.70650.1900 0.1822 −3.0984
0.2402 −2.7510 0.23250.6 0.2470 0.2430 −5.87180.2329 −5.7106

a Errors are computed relative to the results of Sumi and Katayama (1980).

The crack edges are loaded by thermal loads. As
the crack tip advances from O to B (Fig. 1b), the
newly formed crack edges (OB) give way to crack
opening but the traction conditions are not
changed. Before and after the crack extension the
temperatures (fj, fj+1, fj+2) and gradients
(lj, lj+1, lj+2) are the same at the nodes j, j+1
and j+2. Hence the mode I crack closure work
for a crack subjected to remote mechanical plus
thermal loading is given by the following.

WI=
1
2
& l

0

6t dx (5)

where l is the crack tip element size, 6 is the crack
opening and t is the traction on the ligament (OB)
before the crack extension. The crack closure
work for a mode II crack can be calculated in a
similar manner.

If a problem involves remote as well as mechan-
ical loading on crack edges/faces, e.g. fluid pres-
sure, on top of any thermal loading (Fig. 2a), as
the crack extends up to B, the newly formed crack
edges become subjected to the same fluid pressure
(Fig. 2b). The newly formed crack edge OB will
also be subjected to traction due to thermal load-
ing. The treatment of remote loading and crack
edge fluid pressure is the same in the FEM and
BEM. In that extra crack closure arises due to the
fluid pressure on the newly opened up crack
edges. There is however clear difference between
FEM (Maiti, 1992a) and BEM in respect of the

thermal loading. This thermal traction remains
constant throughout the crack opening. The same
traction also exists over the span OB when the
subregion analysis is done. This, therefore, does
not contribute to any additional crack closure
work.

Thus, in the case of thermal loading over the
whole domain and fluid pressure on the crack
edges the crack closure work has two parts. One
part is due to the closure forces arising out of
thermal loading and fluid pressure and the other
is due to crack edge loading p on the extended
crack. That is, for a mode I problem

WI=
1
2
& l

0

6t dx+
1
2
& l

0

6p dx (6)

Fig. 5. Effect of crack tip element size on accuracy for centre
crack under mode II thermal load.
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Fig. 6. Slant edge crack.

GI= [6j−1(c1tj+c2tj+1+c3tj+2+c4p)

+6j−2(c5tj+c6tj+1+c7tj+2+c8p)/60] (10)

GII= [uj−1(c1sj+c2sj+1+c3sj+2+c4q)

+uj−2(c5sj+c6sj+1+c7sj+2+c8q)/60]
(11)

where c1=2, c2=16, c3=2, c4=20, c5=4, c6=
2, c7= −1 and c8=5.

For the quarter point element,

GI= [6j−1(c1tj+c2tj+1+c3tj+2+c4p)

+6j−2(c5tj+c6tj+1+c7tj+2+c8p)/60] (12)

GII= [uj−1(c1sj+c2sj+1+c3sj+2+c4q)

+uj−2(c5sj+c6sj+1+c7sj+2+c8q)/60]
(13)

where c1= (140−45p), c2= (60p−176), c3=
(56−15p), c4=20, c5= (11.25p−34), c6= (56−
15p), c7= (3.75p−12) and c8=10.

The terms containing p and q vanish in the
absence of crack edge mechanical loading. The
mode I and mode II SIFs (KI and KII) can be
determined from the standard relationship be-
tween Gi and Ki, I=I and II.

4. Case studies

Five case studies, one each on mode I centre
cracked plate, mode II centre cracked plate,
mixed mode edge crack, pressurised cylinder with
radial crack and tee joint with edge crack, is
presented. For all the five cases the temperature
and temperature gradients are first computed us-
ing the standard potential boundary element for-
mulation. In the second stage the stress analysis is
done. The plane strain condition has been as-
sumed throughout. The computations are per-
formed on a PC 486 with a single precision
arithmetic.

4.1. Centre cracked plate under mode I loading

In this case (Fig. 3a), the crack edge is main-
tained at a temperature f1=0°C. The outer edges
of the plate is maintained at f2=100°C. The
major dimensions are W=40 mm, L=40 mm.

Similarly for a mode II crack the crack closure
work

WII=
1
2
& l

0

ut dx+
1
2
& l

0

us dx (7)

where u is the sliding displacement between two
crack edges, s is the traction and q is distribution
of external shear load on the crack edges.

The energy release rate computations for the
boundary element models involving linear,
quadratic and quarter point elements in thermal
problems can be performed following Mukhopad-
hyay et al. (1998a,b). The mode I and mode II
energy release rates for the linear element are

GI=6j−1(c1tj+c2tj+1+c3p)/12 (8)

GII=uj−1(c1sj+c2sj+1+c3q)/12 (9)

where c1=2, c2=1 and c3=3.
For the quadratic element,
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a/W ratio is varied from 0.1 to 0.6. The material
properties are as follows: elastic modulus E=1
MPa, Poisson’s ratio n=0.3, coefficient of ther-
mal expansion a=10−4 °C−1. No restraint is
applied on the deformation of the plate. Due to
symmetry a quarter of the plate ABCD is mod-
elled. The similar nodal arrangements have been
considered for linear and quadratic elements. To-
tal number of nodes used is 46. The crack tip
element size is 1% for linear and 2% for quadratic
and quarter point elements. The computed SIFs
are presented in Table 1. The table also includes
the results due to Sumi and Katayama (1980).
The error indicated in Table 1 is with respect to
the solution of Sumi and Katayama (1980). The
proposed MCCI scheme gives rise to a maximum
error of 5.6, 1.5 and 4.4% for the case of linear,
quadratic and quarter point elements respectively.

The dependence of the computed SIFs based on
the proposed scheme on the crack tip element size
for linear, quadratic and quarter point elements

has been examined. The results are presented in
Fig. 4. The straightlines are the best fit lines. The
l/a is varied from 2 to 20%.

4.2. Centre cracked plate under mode II loading

In this example (Fig. 3b) the top and bottom
edges ED and FC are maintained at temperature
f2 and −f2, respectively. The edges FE and DC
and the crack edges are insulated. The data used
are f2=10°C, E=218.4 GPa, n=0.3, a=1.67×
10−5 °C−1 and L/W=1. a/W ratio is varied
from 0.1 to 0.6. The computed SIFs are nondi-
mensionalised dividing by a factor F=af2EW 0.5

so that SIF correction factor Y=KII/F. One half
of the plate ABCD is modelled. The subregion
technique is adapted for the analysis. Each region
is discretised by introducing 40 nodes. The crack
tip element size is 0.02a for the linear element and
0.04a for the quadratic and the quarter point
elements. The computed SIFs correction factor Y

Table 3
Comparison of stress intensity factor (SIF) for angled edge crack

Modeu SIF (MPa, 
m)

Maiti (1992a) Element type

Quarter pointQuadraticLinear

L/W=1
I 58.56 57.88 60.98 59.150.0

20.0 54.50I 57.48 55.7755.28
20.0 12.6613.0712.4712.33II

53.1350.34 51.5751.13I30.0
II 17.46 17.48 18.36 17.7930.0
I45.0 41.12 43.46 42.23

45.0 II 22.6223.3222.20
60.0 29.6630.4728.73I

II 22.1960.0 23.25 22.55

L/W=2
I 84.340.0 82.91 88.46 85.93

20.0 I 78.80 76.94 82.30 79.99
20.0 II 16.10 16.77 17.63 17.10

I 71.4430.0 69.53 74.47 72.41
23.7724.5023.2322.5530.0 II

I45.0 53.38 57.26 55.73
45.0 30.01II 28.43 29.13

I60.0 34.8035.7033.48
II 26.98 28.82 27.9760.0
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Fig. 7. Pressurised cylinder with radial crack.

4.3. Angled edge crack

This is a case involving purely thermal loading.
This type of example has been earlier considered by
Chen and Chen (1981) and Maiti (1992a). The
major dimensions (Fig. 6) are L/W=1 or 2,
W=20 mm and a/W=0.5. The crack angle is
varied from 0 to 60°. The material data are
E=2.07×105 MPa, n=0.3, and a=2.502×10−5

°C−1 (1.39×10−5 °F−1). The temperature of the
whole body is uniformly reduced by 55.55°C
(100°F). The plate movement in the vertical
direction at the top and bottom edges is restricted.
The whole plate is divided into two subregions.
Each subregion is discretised by introducing 40
nodes. The first few elements of the common
interface ahead of the crack tip are oriented along
the crack line and the remaining are placed
horizontally. This facilitates the evaluation of crack
closure work using the MCCI technique. The crack
tip element size is as usual 0.02a for the linear
element and 0.04a for the quadratic and the quarter
point elements. The results are compared with the
finite element solutions presented of Maiti (1992a)
in Table 3.

4.4. Pressurised cylinder with radial crack

This example involves both thermal and
mechanical loading. The outer and inner wall
temperatures 300°C and 0°C, respectively. The
internal pressure is 10 MPa. The cylinder radii (Fig.
7) are r1=100 mm and r2=200 mm. The ratio
a/(r2−r1) is varied from 0.2 to 0.6. Other data
include E=2.1×105 MPa, n=0.3, a=1.2×10−5

°C−1.

is compared with the solution of Sumi and
Katayama (1980) as reported by Murakami et al.
(1987), in Table 2. The errors are again computed
relative to the solutions of Sumi and Katayama
(1980). The error is especially high for the case
a/W=0.1. Excluding this a/W ratio, the error is
within 5.7, 2.8 and 5.9% for the case of linear,
quadratic and quarter point elements,
respectively.

The effect of crack tip element size on the SIFs
for the case of linear, quadratic and quarter point
elements is again examined. l/a ratio is varied
from 2 to 20%. The results are presented in Fig. 5;
the straightlines are the best fit lines.

Table 4
Stress intensity factor (SIF) for cylinder with radial crack

a/(r2−r1) SIF (MPa, 
m)

Quarter point elementQuadratic elementLinear element

129.130.2 132.16 128.19
135.80 136.07140.220.3

135.68139.790.4 134.46
127.13 133.150.5 129.25
114.48 120.860.6 117.31
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Fig. 8. Tee joint with edge crack (a) pure bending (b) combined thermal and mechanical loading.

One half of the domain is modelled using 76
nodes. The crack tip element size is 0.01a when
linear elements are employed and it is 0.02a when
the quadratic and the quarter point elements are
employed. Because of symmetry, the condition
l=0 holds along the crack line. The computed

SIFs for the linear, quadratic and quarter point
elements are shown in Table 4. The SIFs have
been first compared with a SIF handbook solu-
tion (Murakami et al., 1987) considering only
internal pressure. There is a good agreement. The
maximum difference for the entire range of a/
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(r2−r1) is 1.2% when quadratic element is used.
No data for comparison is available for the SIFs
subjected to the combined thermal and mechani-
cal loading (Table 4).

4.5. Tee joint with edge crack

A tee joint with an edge crack subjected to
either mechanical or combined thermal and me-
chanical loading is studied (Fig. 8). The material
properties are as follows: E=2.1×105 MPa, n=
0.3, a=1.2×10−5 °C−1. The subregion analysis
is employed. Regions IDCABGHI and EFBACE
(Fig. 8) are modelled using 31 and 25 quadratic
elements, respectively. The crack tip element size
is 2% of crack length a. The subsequent elements
are 0.04a, 0.08a, etc. a/W ratio in the range
0.1–0.5 is examined.

For the tee with an edge crack, the crack prop-
agation direction is 10° off the vertical axis. Wat-
son (1995) analysed a shallow curved crack in
mode I. In the present analysis a mixed mode
straight crack is considered. To facilitate a com-
parison with Watson (1995), the case of only
mechanical loading is analysed first (Fig. 8a). The
computed data on SIF correction factor Y (Y=
KI/s
pa or KII/s
pa) are presented in Table 5.
s is taken as 1 MPa. The mode II SIF is not that
significant as the mode I SIF. The mode I SIF
results (Table 5) due to bending load agrees well

with the solutions presented by Watson (1995).
The thermomechanical case analysed involves a

uniform shear load (t=10 MPa) on the edge GH
and a temperature drop of 100°C keeping the
edges ID and EF completely restrained in both x
and y directions. The results are presented in
Table 6.

5. Discussion

The mode I centre cracked plate problem has
also been studied by Maiti (1992b,c) and Prasad
et al. (1994). The results of Maiti (1992b) based
on a special finite element for variable order
singularity is also included in Table 1 for a com-
parison. The present results are in good agree-
ment with the finite element solutions of Maiti
(1992b). The number of nodes employed by him is
191 as against 46 in the present study. In the finite
element analysis the crack tip element sizes are in
the range 0.833 to 2.5%a (Maiti 1992b). In the
present study it is uniformly 2%a. He has reported
an error less than 3.8% as against 1.5% in the
present case. Maiti (1992c) has again solved this
problem employing multicorner variable order
singularity finite element where the accuracy is
reported to be within 2.1%. The solutions pre-
sented by Prasad et al. (1994) which are based on
the DBEM, differ by a maximum of 1.23%.

Table 5
Stress intensity factor (SIF) correction factor Y for edge crack in a tee joint under bending load

SIF correction factor Ya/W Mode

Element typeWatson (1995)

Linear Quadratic Quarter point

I 6.86300.1 6.5946 7.0712 6.8618
II0.1 0.0029 0.0144 0.0143

6.1081I 6.6079 6.41876.41600.2
0.1735 0.1798 0.17490.2 II

6.6160 6.1891 6.7949 6.60480.3 I
0.30430.31290.30530.3 II

I 6.6467 7.4792 7.27660.4 7.2770
II0.4 0.4178 0.4341 0.4223

8.53898.76567.47308.51400.5 I
II 0.5292 0.5685 0.55330.5
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Table 6
Stress intensity factor (SIF) correction factor Y for edge crack in tee joint under thermal and mechanical loading

a/W Mode SIF correction factor Y

Thermal and mechanical loadOnly thermal load

Element type Element type

QPEaQuadraticLinear Quadratic QPEa Linear

537.04 561.030.1 I 487.83 508.06 544.42493.03
11.30 12.6112.990.1 16.39II 15.23 16.86

483.70 518.58 544.08 528.410.2 I 476.17 498.04
28.83 30.890.2 II 33.47 35.63 34.62 30.02

556.70526.82 540.780.3 500.62I 489.08 515.34
44.78 38.70 40.990.3 II 43.60 39.8146.11

536.45 571.020.4 I 503.19 534.25 519.02 554.73
45.5243.14 44.180.4 49.48II 48.29 50.97

524.10 533.28 570.83 554.440.5 I 505.20 539.55
43.35 45.470.5 II 48.48 51.43 44.0949.88

a QPE, quarter point element.

The centre cracked plate under mode II thermal
loading is also solved by Maiti (1992b,c) and
Prasad et al. (1994). The solutions presented by
Prasad et al. (1994) through the DBEM are also
included in Table 2 for a comparison. It may be
added here that the results of Prasad et al. (1994)
also show a very high difference (14.3%) from the
solutions of Sumi and Katayama (1980) for a/
W=0.1. The finite element (FE) solutions pre-
sented by Maiti (1992b,c) show a maximum
difference of 2.7% for the whole range of a/W.
The number of nodes used by him is 309 as
against 80 in the present study. The crack tip
element size is in the range 0.625 to 2%a as
compared to 4%a in the present analysis.

In the mixed mode slant edge crack problem,
the computed SIFs employing quadratic element
is slightly higher than the finite element results of
Maiti (1992a). The number of nodes used by
Maiti (1992a) is 305 and the crack tip element size
is 2%a as compared to the present analysis with
80 nodes and a crack tip element size of 4%a.

For the case of pressurised cylinder with a
radial crack (Table 4), the variation of computed
SIFs for the combined pressure and thermal load-
ing with a/(r2−r1) shows an initial increase fol-
lowed by a reversal in the trend. The contribution

of internal pressure on the SIF increases with
increase in a/(r2−r1) (Mukhopadhyay et al.,
1998b). But the thermal load contribution more
than nullify this effect after a certain level. As a
result the SIF is decreasing as the ratio a/(r2−r1)
is exceeding 0.3.

For the tee with an edge crack under thermal
loading and combined thermal and shear loading,
no data for comparison are available in the litera-
ture. The results (Table 5) show that the mode I
SIF correction factor Y initially decreases up to
a/W=0.2 and then increases when only thermal
loading is considered. The mode II effect in this
case steadily increases with a/W. The trend is
similar when the combined thermal and mechani-
cal loading is considered. The effect of mechanical
loading is small compared to the thermal loading.
The mode II SIF is again insignificant compared
with the mode I SIFs.

The computed SIFs based on the proposed
formulation is not very sensitive to the crack tip
element size (Figs. 4 and 5). In both the cases the
error is within 7.5% for linear element, 4% for
quadratic element and 7% for quarter point ele-
ment with a crack tip element size up to 0.1a. It
must be emphasised here that the SIF calculations
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based on the displacement comparison are very
sensitive to the crack tip element size (Mukhopad-
hyay et al., 1998a).

6. Conclusion

The MCCI technique is introduced for calculat-
ing stress intensity factors in 2-D thermal crack
problems based on the boundary element method.
A formulation has been proposed to compute SIFs
for thermal loading on a crack using the MCCI
technique. Mode I, mode II and mixed mode
examples under thermal and/or mechanical loading
have been considered to demonstrate the accuracy
and effectiveness of the scheme. The agreement
with the available solution is generally good; the
difference is usually less than 2% when quadratic
elements are employed. The accuracy of the SIFs
evaluated through the MCCI technique is less
sensitive to the crack tip element size than the
displacement method. A size of the crack tip
element of some 6–8% of crack length can be
utilised to achieve an accuracy of around 3–5%
using either quadratic or quarter point element.

Appendix A. Nomenclature

crack lengtha
cn coefficients of traction in MCCI

formulation
elastic modulusE

GI, GII strain energy release rate in mode I,
mode II

KI, KII stress intensity factors
crack tip element lengthl
domain geometric dimensionsL, W
components of crack edge loadingp, q
normal and parallel to crack

r1, r2 internal and external radii
components of traction parallel andsj, tj

normal to crack
u, 6 components of displacement parallel

and normal to crack
WI, WII crack closure work
x, y Cartesian co-ordinates
Y SIF correction factor

Greeks
u crack orientation with x-axis

Poisson’s ration

natural co-ordinatej

a coefficient of thermal expansion
f potential/temperature

potential/temperature gradientl
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