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Abstract

In a pressurized heavy water reactor (PHWR), contact between calandria tubes (CT) and pressure tubes (PT) makes
them susceptible to delayed hydrogen cracking. Periodic inspection of the channels must be carried out to detect the
contact. As the number of channels in a PHWR is very large (306 in a 230 MW plant) periodic in-service inspection
of all the channels leads to an unacceptable downtime. A non-intrusive technique that employs a system identification
method is presently used for contact detection. The technique tends to overpredict the number of channels in contact,
i.e. they diagnose many channels as contacting while the channels are in fact not in contact. This puts a large number
of healthy channels on the at risk list reducing the efficacy of the method. This paper demonstrates the power of
artificial neural networks (ANNs) in diagnosing the CT–PT contact. A counterpropagation neural network consisting
of a Kohonen layer and a Grossberg layer has been employed. The noise tolerance of the network has been
demonstrated. © 1998 Elsevier Science S.A. All rights reserved.

1. Introduction

The basic building blocks of a pressurized
heavy water reactor (PHWR) are the pressurized
coolant channels. Each coolant channel consists
of a pressure tube (PT) that contains the fuel and
hot pressurized coolant (Fig. 1). The pressure tube
passes through another tube called the calandria
tube (CT) with the garter spring spacers that
maintain the annular insulation gap. A number of

such PT–CT assemblies immersed in a tank of
low pressure, low temperature moderator forms
the reactor.

In many channels the garter springs that main-
tain the gap between PT and CT of PHWR can
get displaced significantly from their design posi-
tion. Moreover, the large unsupported span of the
PT restricts the life of the channel due to prema-
ture contact of the PT with the CT making it
susceptible to delayed hydrogen cracking.

The conventional techniques for channel in-
spection call for an extended shut down of the
reactor and a complete unloading of the channels.
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Fig. 1. Coolant channels of a pressurized heavy water reactor.

The total time and effort involved in such mea-
surements preclude the inspection of all the 306
channels of a 235 MW reactor in a single shut
down. To circumvent the unacceptable downtime
and cost of inspection, researchers have attempted
different diagnostic techniques. The problem de-
mands a technique that is able to maintain a high
strike rate (i.e. the ratio of number of channels
actually in contact to the number of suspected
ones) without missing any offending channel. The
techniques of structural mechanics, however, are
not directly available to contact detection. The
tools of structural mechanics are efficient in pre-
dicting the response of the structure due to an
excitation. It is, however, difficult to reconstruct
the structure from known loads and response.
Such problems are called ‘inverse problems’, and
they are traditional weak points of structural me-
chanics. The system identification techniques are
useful for such problems.

In case of a CT–PT contact the vibrational
signature of the structure changes significantly
due to the contact. de Paz et al. (1991) have
reported experimental transfer functions of the
contacting and the non-contacting channels and
observed that substantial attenuation takes place
at lower modes as a result of contact. Moorthy et
al. (1995) have in their theoretical analysis ob-
served the same phenomenon. Fig. 2 shows the
difference in pattern of a contacting channel vis-a-

vis a non-contacting one. The difference in pat-
tern can be used as the discriminating feature for
the identification of the contacting channels.

To record the dynamic response a time varying
excitation is necessary. In one method, the excita-
tion to the channels is applied externally. Alterna-
tively, the ambient vibration due to the coolant
flow can be recorded. In both the excitation meth-
ods the strike rate of the existing technique is not
good enough to bring the number of suspected
channels to a level that is possible to be inspected
during the regular shutdown period (30 days/
year). Therefore, a technique that can improve the

Fig. 2. Dynamic response of contacting non-contacting chan-
nels.



A. Mukherjee et al. / Nuclear Engineering and Design 183 (1998) 303–309 305

strike rate further should improve the productiv-
ity of the reactor considerably.

Of late, artificial neural networks (ANNs) have
been employed to a variety of pattern recognition
problems such as human face recognition, natural
language understanding, speech recognition, etc.
In structural engineering ANNs have successfully
diagnosed damage (Wu et al., 1992), identified
mode shapes (Mukherjee, 1997), predicted mate-
rial behavior (Mukherjee and Biswas, 1997) along
with a variety of other pattern recognition tasks.
The contact detection problem is a problem of
matching patterns. Therefore, the problem of de-
tecting contact in a member and its extent is well
within the scope of an ANN. Moreover, the struc-
tural response measured at the field contains vari-
ous levels of noise. Therefore, noise tolerance is a
highly desirable property in the tools for the
detection of damage. Some ANN architectures
have proved to be noise tolerant. This property
can be very useful in the detection of contact. In
this paper, a counterpropagation neural network
is employed to detect the CT–PT contact. The
network was trained with the dynamic response of
the coolant channels. The advantages of using
ANNs are their capability to diagnose correctly
even when input contains noise and their ability
to continue learning and improve performance
when presented with new examples. These fea-
tures have been examined in this paper. Before
describing ANNs we shall briefly review the per-
formance of the existing diagnostic technique with
respect to the strike rate.

2. Performance of existing techniques

The existing technique is discussed in detail in a
previous paper (Moorthy et al., 1995). This
method has been applied to older plants and the
following observations can be made:
� The technique does not miss any contacting

channel
� The strike rate of the method is low. Out of the

56 channels identified by the technique as at
risk only 13 were found to be actually in
contact.

Fig. 3. A counterpropagation network.

The strike rate of the existing technique is
roughly 1 in 4. This is rather low and in this paper
we demonstrate an ANN that improves the strike
rate dramatically.

3. Present neural network

ANNs differ widely in architecture, training
methods and learning schemes. We have chosen
the network with the special demands of the
present problem in mind. The input data for the
present network are the dynamic response of the
tubes measured during the routine shutdown peri-
ods. Moreover, data from different installations
are received at different times. The main attractive
features of the present network for the problem at
hand are:
� the network can learn incrementally as new

data becomes available;
� a new class can be augmented in the network

without affecting the previous training.
A sketch of the present network is presented in

Fig. 3. The network is a combination of two well
known algorithms: the self-organizing feature
map of Kohonen (Kohonen, 1988) and a Gross-
berg (Hecht-Nielsen, 1987) outstar. Together
these algorithms possess properties not available
in either one alone.

Fig. 3 shows the simplified feedforward version
of the counterpropagation network. The neurons
in layer 1 (shown as circles) serve only as fan-out
points and perform no computation. Each layer-1
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neuron connects to every neuron in layer 2 (called
the Kohonen layer) through a separate weight
wmn. These are collectively referred to as the
weight matrix w. similarly, each neuron in the
Kohonen layer (layer 2) connects to every neuron
in the Grossberg layer (layer 3) by a weight 7np.

These comprise the weight matrix 7.
The Kohonen layer functions in a winner-take-

all fashion; that is, for a given input vector one
and only one Kohonen neuron outputs a logical
one; all others output a zero. Associated with
each Kohonen neuron is a set of weights connect-
ing it to each input. These connect by way of the
input layer to input signals x1, x2, x3…, xm com-
prising the input vector x. The NET output of
each Kohonen neuron is simply the summation
product of the normalized weight vector and the
normalized input vector.

NETj=% x̃i · w̃ij (1)

where NETj is the NET output of the Kohonen
neuron j. The Kohonen neuron with the largest
NET value is the winner. Its output is set to one;
all others are set to zero.

The Kohonen layer classifies the input vectors
into groups that are similar. This is accomplished
by adjusting the Kohonen layer weights so that
similar input vectors activate the same Kohonen
neuron. Kohonen training is a self-organizing al-
gorithm that operates in the unsupervised mode.
For this reason it is difficult to predict which
specific Kohonen neuron will be activated for a
given input vector. It is only necessary to ensure
that training separates dissimilar input vectors.

The training equation is as follows:

wnew=wold+a(x−wold) (2)

where wnew is the new value of a weight connect-
ing an input component x to the winning neuron;
wold is the previous value of this weight; and a is
a training rate coefficient that may vary during
the training process.

The value of a varies from 0 to 1 and controls
the rate of learning. An a of 1 means that the
network learns a new example as soon as it is
presented. The network, however, forgets all pre-
vious examples of that class. Similarly, an a of 0

means that the network does not learn at all, and
it classifies new examples based on previous expe-
riences only. Initially a is set to a value close to 1
and it is gradually reduced as training progresses.

The Grossberg layer functions in a similar man-
ner. Its NET output is the weighted sum of the
Kohonen layer outputs K1, K2,…, Kn forming the
vector K. The connecting weight vector 7 consists
of the weights 611, 621,…, vnp. The NET output of
each Grossberg neuron is then:

NETj=% ki · 7ij (3)

where NETj is the output of the Grossberg neu-
ron j. If the Kohonen layer is operated such that
only one neuron’s NET is 1 and all others are 0,
only one element of the K vector is non-zero, and
the calculation is simple. In fact, the only action
of each neuron in the Grossberg layer is to output
the value of the weight that connects it to the
single non-zero Kohonen neuron.

The weight adjustment in the Grossberg layer is
proportional to the difference between the weight
and the desired output of the Grossberg neuron
to which it connects.

7new=7old+ (y−7old)ki (4)

where ki is the output of Kohonen neuron i, and
y is the vector of desired outputs.

It is clear that the weights on the Grossberg
layer will converge to the average values of the
desired outputs, whereas weights on the Kohonen
layer are trained to the average values of the
inputs. The unsupervised, self-organizing opera-
tion of the Kohonen layer produces outputs at the
intermediate positions and these are mapped to
the desired outputs by the Grossberg layer.

4. Network input and training

The present network accepts the dynamic re-
sponse of the channels as input and classifies them
into contacting and non-contacting categories.
The ANN is trained with the measured dynamic
response of different channels for which the in-
service inspection has been carried out. The re-
sponse has been measured for both shutdown
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flow and externally applied excitation. It was
found that the shutdown flow excitation was suffi-
ciently broad banded to bring out the difference
between the non-contacting and the contacting
channels.

In-service inspection was carried out in 22
channels for which shutdown flow response is
available. All these 22 channels were diagnosed as
contacting by the existing techniques. After in-ser-
vice inspection, six channels out of the 22 in-
spected channels were found to have contact.

In case of externally excited channels in-situ
inspection was carried out for 34 channels. The
existing technique diagnosed all these channels as
contacting. Seven channels out of 34 were found
in contact after in-service inspection. These data
were used for training the ANN.

5. Network performance

The response data of the channels has been
used directly to train the networks. Two net-
works, one using the linking cross coherent power
spectrum (CCPS) (Moorthy et al., 1995) as input
and the second one with the coherent output
power (COP) due to external excitation as input.
The input data were available in a range of 0.5–
200 Hz with an interval of 0.5 Hz. The networks
have 400 input nodes to accept the input (Fig. 4).

The number of intermediate (Kohonen) nodes
is decided by successive trials and evaluation of
performance. We started with three nodes and
found that the networks gave a satisfactory per-
formance with ten nodes in the Kohonen layer.

Fig. 5. Weights of two Kohonen nodes.

The number of output nodes was only one be-
cause we have two categories, contact and non-
contact. The output toggles between binary states,
1 if contacting and 0 if not contacting.

The training procedure starts with the initializa-
tion of the network. The weights of the connec-
tions were initialized to a uniform value equal to
1/
n, where n is the number of input nodes. The
learning parameter was set to 0.7. The examples
were than presented successively to the network.
The Kohonen layer trains in an unsupervised
fashion, i.e. it classifies the incoming pattern
based on the present weights and modifies the
weights of the winning neuron. Therefore, the ten
Kohonen neurons hold ten pattern classes. The
weights of a node shows the pattern that has been
stored in that node. The discriminating feature of
the contacting and the non-contacting channels is
visible if we plot the weights. Fig. 5 presents two
sample patterns stored in two Kohonen nodes.

The Grossberg layer identifies those classes as
contacting or non-contacting based on the results
of in-situ inspection. The identification is carried
out by adjusting the weights of the Grossberg
layer.

A part of the available data was utilized in
training. 15 out of the 22 CCPS data and 17 out
of the 34 COP data were used in training. The
training process was stopped after the network
had learned all the examples. The rest of the data
were used in testing the network. After training,
the performance of the network must be tested
with new examples that are not used in training.Fig. 4. Present network architecture.
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The network was able to diagnose all the contact
and non-contact cases correctly, both in training
and new examples.

At present the network is able to diagnose all
the available data. However, the success of the
network for all the future cases is not guaranteed.
The network will be used to diagnose the future
cases. The network may fail to classify a pattern
correctly in case the input pattern differs consider-
ably from the ten patterns that are already stored.
The flexible nature of the network allows augmen-
tation of new patterns at any point of time. The
new pattern can be included in the network by
introducing a new node in the Kohonen layer.
Thus, the network continues to learn as new data
are available. In the present problem new data
become available when plants are shutdown and
inspection is carried out. Obviously, it takes a
long period of time. Therefore, the flexibility of
the present network is especially attractive.

6. Noise tolerance

The inputs to the ANN are measured re-
sponses. The measured data may contain noise of
different levels. The detection tool should be able
to function with the noise present in the data.
Therefore, to check the noise tolerance capability
of the networks, we have introduced a noise of
915%, i.e. successive spectral values have been
multiplied by 1.15 and 0.85. It was observed that

the networks did not confuse and identified the
channels correctly from the noisy data. Encour-
aged by the performance of the networks the level
of noise was then increased to 50% (Fig. 6). In
this case the network that uses the response due
to external excitation as input could identify the
channels correctly. The network that uses re-
sponse due to the shut down flow missed two
contact cases, i.e. it wrongly classified two noisy
samples of healthy channels as contacting. The
shutdown flow response is susceptible to external
noise leads to inferior performance than the re-
sponse due to external excitation. However, the
noise tolerance capability of the network was
clearly demonstrated here.

7. Closing remarks

Identification of CT–PT contact in a PHWR is
a difficult problem. The dynamic response of the
channels when in contact differs from that of the
non-contacting ones. This feature is utilized in
distinguishing the contacting channels from the
non-contacting ones. The present technique has a
low strike rate that needs to be improved.

The ANNs that are inspired by the functioning
of the human brain are employed to find out the
CT–PT contact. ANNs, on the other hand, assess
the condition of the channels by matching the
dynamic response of the channels with the pat-
terns stored as weights on the connections. The
ANNs were very effective in identifying the con-
tacting channels.

Noise tolerance, which is the inherent property
of the ANNs, was tested in this investigation by
introducing noise of various levels in the input
patterns. The performance of the network was
evaluated with the noisy data. The network
showed a satisfactory performance. One of the
major advantages of the present network is that it
can learn incrementally, as and when new input
data are available. This feature is particularly
attractive for the present network. The learning of
the network will be improved continuously with
additional test results.Fig. 6. Noisy and clean data.
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