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Abstract

This paper deals with the boundary element method based evaluation of stress intensity factors for
mode I and mixed mode problems under remote and/or crack edge loading. The modi®ed crack closure
integral technique has been used to enhance the accuracy of the computed stress intensity factors.
Simple, ready to use, relations for the strain energy release rate have been obtained corresponding to
linear, quadratic and quarter point elements surrounding the crack tip. The boundary element method is
employed by breaking a domain into two subregions for the mixed mode problems. Case studies
involving remote or crack edge loading for both mode I and mixed mode problems are presented to
demonstrate the accuracy of the new scheme. The stress intensity factors based on the proposed scheme
show better agreement with the standard solutions available in the literature than those obtained directly
through the displacement method. # 1998 Elsevier Science Ltd. All rights reserved.

Keywords: BEM; Modi®ed crack closure integral; SIFs; Remote loading; Crack edge loading; Mixed mode; Subre-
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Nomenclature

a crack length
cn coe�cients of traction in MCCI formulation
E elastic modulus
GI, GII strain energy release rate in mode I, mode II
KI, KII stress intensity factors
l crack tip element length
L, L1, L2,W domain geometric dimensions
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p, q components of crack edge loading normal and parallel to crack
r1, r2 internal and external radii
sj, S components of traction parallel to crack and global x direction
tj, T components of traction normal to crack and global y direction
u, U components of displacement parallel to crack and global x direction
v, V components of displacement normal to crack and global y direction
WI, WII crack closure work
x, y cartesian coordinates
Y SIF correction factor
y crack orientation with x-axis
m shear modulus
n Poisson's ratio
x natural coordinate

1. Introduction

The boundary element method (BEM) is a well established numerical tool for computation
of stress intensity factors (SIFs) with good accuracy [1±16]. In the case of modelling of mixed
mode problems by the BEM a close proximity of nodes on the two crack edges leads to a
degeneracy of the boundary element equations [2]. This shortcoming is overcome using the
subregion analysis, which was ®rst introduced by Blandford et al. [6] to solve problems of
mixed mode cracks. In this scheme, the nodes which are on the two crack edges are assumed
to lie on two adjacent regions. The two regions have a common interface. The boundary
element equations are written for each region separately [6]. The equations connected with the
common interface nodes are obtained from the two subregions. Two conditions are invoked to
combine the sets of equations associated with the subregions to obtain a su�cient number of
equations for the whole domain. First, any node common to the two adjacent subregions must
have the same displacements. Second, net traction at the nodes must be zero. As has been
pointed out by Cruse [1] the real shortcoming of this method is the need to create non-physical
surfaces extending from the original crack tip to the physical boundaries. However this method
is simple, easy to implement and poses no serious di�culty except for studying the path of the
crack growth phenomena. A large number of investigators followed this technique to analyse
mixed mode crack problems [8±10, 13]. The single domain BEM [17±19] using hypersingular
boundary integral equations do not require any subdivisioning of the geometry. In the single
domain BEM, the displacement equation is applied one crack edge/surface and traction
equation on the other crack edge/surface. In the present paper the multi-domain formulation is
adapted.
The crack closure integral concept has been adapted in the ®nite element method (FEM) [20±

24] to estimate the SIF. Farris and Liu [15] reported the SIFs based on the crack closure
integrals and the BEM for three dimensional components. Their results show good agreement
with the standard solutions. The present authors have demonstrated recently [25, 26] that the
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MCCI technique can be adapted in the BEM to enhance the computational accuracy of the
SIFs. The case studies reported so far deal with the mode I problems only.
Loading on the crack edges come up due to explicit mechanical loading, crack subjected to

¯uid pressure, implicit loading arising out of a thermal ®eld, etc. In such a case, when a crack
is extended or an extended crack is closed, to compute the crack closure work, there is an extra
loading on the newly formed crack edges on top of the usual crack closure forces. This loading
contributes to an additional amount of work. A crack closure integral calculation must
therefore cognise this fact. Such calculations have been presented earlier in the case of
FEM [24]. This is not yet reported in the case of BEM.
In this paper, the e�ectiveness of the MCCI in conjunction with the local smoothing scheme

is demonstrated for the mixed mode problems. Further, the evaluations of crack closure
integrals in the presence of crack edge loading are presented.

2. Mathematical formulation

In the case of mechanical loading applied away from the crack edges (Fig.1a), the nodes jÿ2
and jÿ1 on the crack edge AO are free of any load. As the crack extends up to B, the newly
formed crack edges are also load-free (Fig. 1b). If the crack edges are subjected to, say, ¯uid
pressure (Fig. 1c), as the crack extends, the newly formed crack edges are also subjected to the
same ¯uid pressure (Fig. 1d). The crack edges will therefore undergo an extra opening. The
crack closure work have two parts. One part is due to the usual tractions tj , tj+1 and tj+2 and
the other part is due to ¯uid pressure p. For a mode I problem the crack closure work is given
by

WI � 1

2

�l
0

v tdx� 1

2

�l
0

v pdx �1�

where p is intensity of distributed crack edge normal load and v is full opening displacement.
In the absence of ¯uid pressure WI is fully given by the ®rst part.
Similarly for a mode II crack the crack closure work

WII � 1

2

�l
0

u s dx� 1

2

�l
0

u q dx �2�

where u is the full crack sliding displacement, s is the traction and q is intensity of distributed
external shear load on the crack edges. The direction of this load is positive, when it produces
e�ects additive to that due to the external load. The shown directions are positive. The
integrals can be computed following a procedure given in Ref. [26]. The pressure loading can
be of uniform intensity or with a linear or quadratic variation. In the following, results are
given for crack edges subjected to constant ``¯uid'' pressure. The results for any variation can
be obtained easily following the procedure given below.
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Under a mixed mode loading, the upper and lower crack faces do not deform symmetrically
or antisymmetrically with respect to the crack plane. The amount of work involved in the
symmetric and antisymmetric deformations can be easily obtained through a judicious
partitioning of the domain.

Fig. 1. Illustration of crack closure forces. (a) Remote loading and (b) closure forces, (c) crack edge loaded
externally and (d) closure forces and external loading.
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2.1. Linear element

The displacement variation over OA for linear element can be written in the form

v � vjÿ1�1ÿ x�=2 �3�
where x is a natural coordinate with origin at the centre of OA and vjÿ1 is the opening
displacement at corner node A. A linear variation of the traction t along OB can be
represented in the same way.

t � 0:5 �tj � tj�1� ÿ 0:5 �tj ÿ tj�1�x �4�
where x is a natural coordinate with origin at the centre of OB. The crack edges are subjected
to constant ¯uid pressure p. The crack closure work is obtained from Eq. (1).This gives the
energy release rate

GI � vjÿ1 �c1 tj � c2 tj�1 � c3 p�=12 �5�
where c1=2, c2=1 and c3=3.
A similar expression can be derived for GII for a mode II case, involving x components of

tractions and displacements.

GII � ujÿ1 �c1 sj � c2 sj�1 � c3 q�=12: �6�

The SIF can then be obtained using the standard relations between G and K.

2.2. Quadratic element

In the case of quadratic elements (Fig. 1a) the displacement variation over OA is given by

v � vjÿ1 ÿ 0:5 vjÿ2 x� �0:5 vjÿ2 ÿ vjÿ1� x2: �7�
Similarly the traction variation, which is also quadratic, has the form

t � tj�1 � 0:5 �tj�2 ÿ tj� x�
�
0:5 �tj�2 � tj� ÿ tj�1

�
x2: �8�

The total crack closure work in the opening mode

WI � 1

2

�l
0

v t dx� 1

2

�l
0

v p dx

� �vjÿ1�2 tj � 16 tj�1 � 2 tj�2� � vjÿ2�4 tj � 2 tj�1 ÿ tj�2�
�
=60� p�4 vjÿ1 � vjÿ2�=12: �9�

The strain energy release rates

GI �
�
vjÿ1 �c1 tj � c2 tj�1 � c3 tj�2 � c4 p� � vjÿ2 �c5 tj � c6 tj�1 � c7 tj�2 � c8 p�

�
=60 �10�
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GII �
�
ujÿ1 �c1 sj � c2 sj�1 � c3 sj�2 � c4 q� � ujÿ2 �c5 sj � c6 sj�1 � c7 sj�2 � c8 q�

�
=60 �11�

where c1=2, c2=16, c3=2, c4=20, c5=4, c6=2, c7=ÿ1 and c8=5.

2.3. Quarter point element

In the case of quarter point elements the displacement is assumed to vary as Zx along OA.
That is

v � 2 �vjÿ2 ÿ 2 vjÿ1� �1ÿ x=l� � �4 vjÿ1 ÿ vjÿ2�p�1ÿ x=l�: �12�
The traction too has a similar variation and can be represented in the form

t � tj ÿ0:5 x �1ÿ x�� 	� tj�1 �1ÿ x2� � tj�2 0:5 x �1� x�� 	 �13�
where 1+ x=2 Z(x/l).
The total crack closure work in the opening mode

WI � 1

2

�l
0

v t dx� 1

2

�l
0

v p dx

�
h
vjÿ1 tj �140ÿ 45p� � tj�1 �60pÿ 176� � tj�2 �56ÿ 15p�� 	
� vjÿ2 tj �11:25pÿ 34� � tj�1 �56ÿ 15p� � tj�2 �3:75pÿ 12�� 	i

=60

� p 2 vjÿ1 � vjÿ2
� 	

=6: �14�
The strain energy release rates in mode I and mode II are ®nally obtained as

GI � vjÿ1�c1 tj � c2 tj�1 � c3 tj�2 � c4 p� � vjÿ2�c5 tj � c6 tj�1 � c7 tj�2 � c8 p�
� �

=60 �15�

GII � ujÿ1�c1 sj � c2 sj�1 � c3 sj�2 � c4 q� � ujÿ2�c5 sj � c6 sj�1 � c7 sj�2 � c8 q�
� �

=60 �16�
where

c1 � �140ÿ 45p�; c2 � �60pÿ 176�; c3 � �56ÿ 15p�; c4 � 20;

c5 � �11:25pÿ 34�; c6 � �56ÿ 15p�; c7 � �3:75pÿ 12� and c8 � 10:

3. Case studies

Five case studies involving an angled edge crack, angled crack, a centre crack under ¯uid
pressure, a radial inner edge crack under internal pressure in a cylindrical vessel and a kinked
crack, are presented. The results are all based on plane strain condition. All the cases have been
studied considering the material to be isotropic and using linear, quadratic and quarter point
elements. The computed SIFs, wherever possible, are compared with the standard solutions
available in the literature. All computations are based on single precision arithmetic on a PC 486.
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3.1. Angled edge crack

The crack is under remote loading (Fig. 2). The major dimensions are:

H1=H2=W=20 mm and a/W=0.5. The material properties are: shear modulus m=105

MPa and Poisson's ratio n=0.3. The crack angle y is varied from 158 to 608. The analysis is

based on the subregion technique. The whole plate is divided into two subregions. Each

subregion is modelled using 25 elements when quadratic and quarter point elements are

employed. The crack edge is modelled by six elements. The ®rst few elements ahead of the

crack tip, forming a part of the interface are oriented at an angle y (Fig. 2b), where y is the

crack orientation. The remaining interface is oriented horizontally. This arrangement helps in

an evaluation of the MCCI for an in-plane extension of the crack. The crack tip element size is

0.02a and the sizes of the subsequent elements, away from the crack tip are 0.04a, 0.08a, 0.16a,

etc. The same nodal arrangements have been employed for the case of linear elements. Here

the total number of elements is 50 and the crack tip element size is 0.01a. The sizes of

subsequent elements away from the crack tip vary accordingly.

From the standard BE analysis, the global displacements and tractions are obtained. These

are resolved into components (s, t and u, v) aligned with the normal and parallel directions of

the crack edges. That is, s= S cosy+ T siny, t= S sinyÿ T cosy, u= U cosy+ V siny,
v= U sinyÿ V cosy, where S and T are tractions and U and V are displacements in global x

and y directions, respectively. These tractions and displacements can be used to compute GI

and GII using the relations given earlier.

In the following, the SIFs has been computed using both the displacement method and the

proposed MCCI method. In the displacement method the SIF is evaluated considering

separately the displacement of the ®rst and the second corner nodes behind the crack tip. The

Fig. 2. (a) Angled edge crack and (b) boundary element mesh over span of crack.
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results in the form of SIF correction factor Y (Y= KI /sZ(pa) or Y= KII /sZ(pa)) are

compared with some standard solutions [27, 28] in Table 1.

Table 1
Comparison of SIF correction factor Y for mixed mode angled edge crack (a/W=0.5) for linear, quadratic and

quarter point elements

SIF correction factor Y

Computed by:

Displacement method CCI method

2nd corner node 1st corner node

y, mode Reference solution [28] Ref. [27] Y % Error Y % Error Y % Error

Linear element
15.0, I 2.5476 2.4120 2.2858 2.4346
15.0, II 0.3696 0.3369 0.3215 0.3442

22.5, I 2.2800 2.2547 2.1501 ÿ5.699 2.0375 ÿ10.634 2.1701 ÿ4.822
22.5, II 0.4950 0.5003 0.4565 ÿ7.771 0.4356 ÿ11.993 0.4664 ÿ5.782
30.0, I 1.9056 1.8353 1.7391 1.8521

30.0, II 0.5788 0.5276 0.5033 0.5389
45.0, I 1.2000 1.2305 1.1896 ÿ0.870 1.1267 ÿ6.112 1.1994 ÿ0.052
45.0, II 0.5700 0.5850 0.5373 ÿ5.737 0.5125 ÿ10.089 0.5486 ÿ3.758
60.0, I 0.6439 0.6087 0.6470

60.0, II 0.4312 0.4112 0.4401
Quadratic element
15.0, I 2.5476 2.5543 2.4631 2.5875

15.0, II 0.3696 0.3473 0.3445 0.3666
22.5, I 2.2800 2.2547 2.2701 ÿ0.435 2.1888 ÿ4.001 2.2992 0.843
22.5, II 0.4950 0.5003 0.4681 ÿ5.430 0.4642 ÿ6.217 0.4940 ÿ0.211
30.0, I 1.9056 1.9346 1.8645 1.9582
30.0, II 0.5788 0.5392 0.5344 0.5685
45.0, I 1.2000 1.2305 1.2556 4.636 1.2073 0.609 1.2411 3.425
45.0, II 0.5700 0.5850 0.5457 ÿ4.259 0.5405 ÿ5.172 0.5749 0.855

60.0, I 0.6904 0.6580 0.6877
60.0, II 0.4322 0.4282 0.4555
Quarter point element

15.0, I 2.5476 2.6027 2.5599 2.5213
15.0, II 0.3696 0.3532 0.3573 0.3566
22.5, I 2.2800 2.2547 2.3126 1.429 2.2742 ÿ0.253 2.2398 ÿ1.763
22.5, II 0.4950 0.5003 0.4759 ÿ3.850 0.4814 ÿ2.757 0.4803 ÿ2.966
30.0, I 1.9056 1.9703 1.9368 1.9071
30.0, II 0.5788 0.5480 0.5538 0.5526

45.0, I 1.2000 1.2305 1.2784 6.536 1.2538 4.485 1.2335 2.792
45.0, II 0.5700 0.5850 0.5543 ÿ2.751 0.5599 ÿ1.769 0.5586 ÿ2.007
60.0, I 0.7030 0.6835 0.6696
60.0, II 0.4389 0.4434 0.4423
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3.2. Angled crack

The subregion technique is again employed to study the angled crack in a ®nite plate under
uniform tension (Fig. 3). The con®guration of the plate is: W=50 mm, H=100 mm. The
crack angle y is varied from 158 to 758 in steps of 158. The a/W ratio is 0.2. The material
properties mentioned in the earlier case have again been used. The whole plate is divided into
two subregions (Fig. 3b). The discretization details are again the same as in the previous case.
The computed SIF correction factor Y (Y= KI /sZ(pa) or Y= KII /sZ(pa)) based on the
displacement and MCCI techniques have been compared in Table 2.
The same example is studied by varying the a/W ratio. The computed SIF correction factor

Y using only the MCCI technique is compared with the standard solutions for two a/W ratios,
0.4 and 0.6, in Table 3.

3.3. Centre crack under ¯uid pressure

The geometry (L= W=10 mm; a/W=0.1) and loading is shown in Fig. 4. Material data
are: elastic modulus E=2.1�105 MPa and n=0.3. One fourth of the plate is discretized. The
SIF is computed using displacements at the ®rst and second corner nodes and the MCCI
method. In the latter case, the SIF is evaluated with and without the inclusion of the crack
edge external loads. The SIF correction factor, Y= KI /pZ(pa) is compared in Table 4.

3.4. Radial crack under ¯uid pressure

For this case, parameter a/(r2ÿr1) is varied in the range of 0.2±0.8 (Fig. 5). The number of
elements are 26 and 52, respectively, when quadratic and quarter point elements are used. The

Fig. 3. (a) Angled crack and (b) boundary element mesh over span of crack.
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sizes of elements near the crack tip are 0.01a, 0.02a, 0.04a, 0.08a etc. For the linear element the
same discretization has been employed and the number of elements and nodes is 52. The SIFs
are computed using the proposed scheme with and without the inclusion of ¯uid pressure. A
comparison of SIF correction factor Y (Y= KI/pZ(pa)) is presented in Table 5.

Table 2
Comparison of SIF correction factor Y for angled crack (a/W=0.2) for linear, quadratic and quarter point elements

SIF correction factor Y

Computed by:

Displacement method CCI method

2nd corner node 1st corner node

y, mode Reference solution [29] Y % Error Y % Error Y % Error

Linear element
15.0, I 0.9577 0.8973 ÿ6.306 0.8571 ÿ10.505 0.9185 ÿ4.093
15.0, II 0.2510 0.2357 ÿ6.095 0.2252 ÿ10.280 0.2413 ÿ3.879
30.0, I 0.7730 0.7244 ÿ6.286 0.6920 ÿ10.481 0.7416 ÿ4.061
30.0, II 0.4367 0.4092 ÿ6.297 0.3909 ÿ10.486 0.4189 ÿ4.078
45.0, I 0.5181 0.4862 ÿ6.160 0.4645 ÿ10.346 0.4978 ÿ3.909
45.0, II 0.5072 0.4738 ÿ6.585 0.4525 ÿ10.785 0.4848 ÿ4.423
60.0, I 0.2605 0.2459 ÿ5.591 0.2351 ÿ9.756 0.2521 ÿ3.212
60.0, II 0.4417 0.4113 ÿ6.889 0.3927 ÿ11.098 0.4206 ÿ4.777
75.0, I 0.0701 0.0683 ÿ2.567 0.0654 ÿ6.679 0.0703 0.255
75.0, II 0.2560 0.2395 ÿ6.430 0.2289 ÿ10.587 0.2453 ÿ4.161
Quadratic element

15.0, I 0.9577 0.9111 ÿ4.866 0.9080 ÿ5.190 0.9680 1.079
15.0, II 0.2510 0.2389 ÿ4.823 0.2382 ÿ5.110 0.2540 1.215
30.0, I 0.7730 0.7357 ÿ4.828 0.7332 ÿ5.145 0.7818 1.133
30.0, II 0.4367 0.4156 ÿ4.831 0.4143 ÿ5.123 0.4418 1.177

45.0, I 0.5181 0.4936 ÿ4.721 0.4921 ÿ5.015 0.5248 1.300
45.0, II 0.5072 0.4828 ÿ4.818 0.4812 ÿ5.136 0.5130 1.145
60.0, I 0.2605 0.2488 ÿ4.485 0.2482 ÿ4.704 0.2650 1.716

60.0, II 0.4417 0.4209 ÿ4.720 0.4194 ÿ5.038 0.4473 1.257
75.0, I 0.0701 0.0677 ÿ3.397 0.0676 ÿ3.502 0.0724 3.246
75.0, II 0.2560 0.2457 ÿ4.026 0.2455 ÿ4.114 0.2624 2.505

Quarter point element
15.0, I 0.9577 0.9252 ÿ3.396 0.9401 ÿ1.833 0.9398 ÿ1.867
15.0, II 0.2510 0.2425 ÿ3.382 0.2465 ÿ1.794 0.2466 ÿ1.742
30.0, I 0.7730 0.7471 ÿ3.351 0.7593 ÿ1.778 0.7592 ÿ1.785
30.0, II 0.4367 0.4219 ÿ3.395 0.4288 ÿ1.813 0.4290 ÿ1.771
45.0, I 0.5181 0.5013 ÿ3.245 0.5095 ÿ1.652 0.5097 ÿ1.618
45.0, II 0.5072 0.4900 ÿ3.383 0.4979 ÿ1.826 0.4980 ÿ1.811
60.0, I 0.2605 0.2527 ÿ3.006 0.2570 ÿ1.342 0.2574 ÿ1.173
60.0, II 0.4417 0.4271 ÿ3.299 0.4340 ÿ1.747 0.4341 ÿ1.716
75.0, I 0.0701 0.0688 ÿ1.835 0.0701 0.048 0.0705 0.523

75.0, II 0.2560 0.2493 ÿ2.601 0.2540 ÿ0.780 0.2548 ÿ0.474
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Table 3
Comparison of SIF correction factor Y for angled crack

SIF correction factor Y

Computed by CCI method

Linear element Quadratic element Quarter point element

y, mode Reference

solution [29]

Y % Error Y % Error Y % Error

a/w=0.4
15.0, I 1.0402 0.9949 ÿ4.354 1.0504 0.977 1.0210 ÿ1.850
15.0, II 0.2560 0.2456 ÿ4.065 0.2587 1.070 0.2514 ÿ1.814
30.0, I 0.8456 0.8078 ÿ4.471 0.8538 0.967 0.8300 ÿ1.849
30.0, II 0.4497 0.4306 ÿ4.244 0.4546 1.092 0.4417 ÿ1.787
45.0, I 0.5719 0.5457 ÿ4.589 0.5775 0.976 0.5613 ÿ1.847
45.0, II 0.5290 0.5046 ÿ4.604 0.5344 1.027 0.5191 ÿ1.868
60.0, I 0.2896 0.2771 ÿ4.319 0.2932 1.234 0.2851 ÿ1.553
60.0, II 0.4660 0.4426 ÿ5.030 0.4708 1.027 0.4574 ÿ1.853
75.0, I 0.0783 0.0766 ÿ2.214 0.0800 2.170 0.0779 ÿ0.463
75.0, II 0.2721 0.2577 ÿ5.291 0.2758 1.344 0.2679 ÿ1.533
a/w=0.6
15.0, I 1.2183 1.1529 ÿ5.371 1.2209 0.215 1.1884 ÿ2.451
15.0, II 0.2725 0.2603 ÿ4.487 0.2742 0.609 0.2664 ÿ2.227
30.0, I 0.9840 0.9286 ÿ5.633 0.9860 0.198 0.9597 ÿ2.465
30.0, II 0.4800 0.4566 ÿ4.877 0.4827 0.554 0.4691 ÿ2.268
45.0, I 0.6611 0.6227 ÿ5.803 0.6636 0.371 0.6460 ÿ2.285
45.0, II 0.5674 0.5369 ÿ5.372 0.5706 0.560 0.5546 ÿ2.251
60.0, I 0.3332 0.3140 ÿ5.752 0.3353 0.630 0.3265 ÿ2.021
60.0, II 0.5022 0.4726 ÿ5.885 0.5055 0.647 0.4913 ÿ2.176
75.0, I 0.0896 0.0859 ÿ4.134 0.0909 1.397 0.0886 ÿ1.127
75.0, II 0.2939 0.2751 ÿ6.390 0.2963 0.828 0.2880 ÿ2.013

Fig. 4. Centre crack under ¯uid pressure.
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3.5. Kinked crack

This example deals with a single edge kinked crack in a ®nite plate under uniform tension
(Fig. 6). The subregion technique is again employed. Major plate dimensions are: W=10 mm,
L=30 mm, a/W=0.25Z2. The crack angle y is 458. The material properties utilised are:
E=1 MPa and n=0.3. The loading intensity s=10 MPa. Two Da/W ratios, 0.0125 and
0.025, are examined. The entire plate is subdivided into two regions (Fig. 6b). The total
number of elements in each region is restricted to 25 when the quadratic elements are used.
The kink is modelled using three elements. There are also three similar elements ahead of the
kinked crack tip B. Very similar mesh is used for linear and quarter point elements. In the case
of the quarter point elements used around the crack tip, the knee is modelled by ordinary
quadratic elements. The computed SIF correction factors Y (Y= KI /sZ(pa) or Y= KII /
sZ(pa)) are compared with reference solutions in Table 6.

4. Discussion

Results of the angled edge crack problem are compared with those due to Rooke and
Cartwright [28] and Sethuraman [27] (Table 1). The di�erence in Y is based on the solution of

Fig. 5. Radial inner edge crack.

Table 4
Comparison of SIF correction factor Y for centre crack under ¯uid pressure (a/w=0.1)

Computed by:

Displacement method CCI method

2nd corner node 1st corner node No external force With external force

Reference
solution [24]

Element type Y % Error Y % Error Y % Error Y % Error

1.0 linear 0.9462 ÿ5.383 0.9002 ÿ9.980 0.9467 ÿ5.330 0.9617 ÿ3.829
1.0 quadratic 0.9765 ÿ2.354 0.9567 ÿ4.328 0.9819 ÿ1.810 1.0085 0.850

1.0 quarter point 0.9907 ÿ0.932 0.9899 ÿ1.006 0.9522 ÿ4.777 0.9825 ÿ1.751
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Ref. [28]. The accuracy of the SIFs is improved through the proposed scheme. The accuracy in
the case of the displacement method is always dependent on where the displacements are
compared. Generally the SIFs computed by comparing the displacement at the second corner
node behind the crack tip are better than those based on the ®rst corner node. The maximum
di�erence is around 10%, 6% and 4.5% for the linear, quadratic and quarter point elements,
respectively, when displacement is compared at the ®rst corner node for the entire range of
angle y. This is approximately 8%, 5.5% and 6.5%, respectively, when displacement is
compared at the second corner node. This di�erence reduces to within 6%, 3.2% and 3%,
respectively, for the three elements when the proposed MCCI scheme is employed. Further, the
results show good agreement with the solutions of Ref. [27], where the FEM is used to

Table 5
Comparison of SIF correction factor Y for cylindrical vessel with radial crack under internal pressure for linear,

quadratic and quarter point elements

SIF correction factor Y

Computed by:

Displacement method CCI method

2nd corner node 1st corner node No external force With external force

a/(r2ÿr1) Reference
solution [30]

Y % Error Y % Error Y % Error Y % Error

Linear element

0.2 2.7760 2.5938 ÿ6.563 2.4650 ÿ11.20 2.6162 ÿ5.757 2.6311 ÿ5.218
0.3 2.8672 2.6486 ÿ7.625 2.5174 ÿ12.20 2.6723 ÿ6.796 2.6873 ÿ6.275
0.4 2.9887 2.7419 ÿ8.257 2.6062 ÿ12.80 2.7673 ÿ7.409 2.7822 ÿ6.909
0.5 3.1360 2.8373 ÿ9.525 2.6960 ÿ14.03 2.8624 ÿ8.725 2.8773 ÿ8.248
0.6 3.3152 2.9955 ÿ9.644 2.8458 ÿ14.16 3.0219 ÿ8.846 3.0369 ÿ8.395
0.7 3.5541 3.1968 ÿ10.05 3.0359 ÿ14.58 3.2238 ÿ9.294 3.2387 ÿ8.873
0.8 3.9125 3.5431 ÿ9.442 3.3633 ÿ14.04 3.5716 ÿ8.713 3.5866 ÿ8.330
Quadratic element
0.2 2.7760 2.6853 ÿ3.266 2.6203 ÿ5.609 2.7412 ÿ1.254 2.7676 ÿ0.303
0.3 2.8672 2.7677 ÿ3.469 2.7012 ÿ5.789 2.8272 ÿ1.397 2.8536 ÿ0.476
0.4 2.9887 2.8898 ÿ3.310 2.8198 ÿ5.651 2.9524 ÿ1.215 2.9788 ÿ0.332
0.5 3.1360 3.0236 ÿ3.584 2.9467 ÿ6.037 3.0845 ÿ1.642 3.1109 ÿ0.801
0.6 3.3152 3.2037 ÿ3.364 3.1189 ÿ5.922 3.2647 ÿ1.522 3.2911 ÿ0.726
0.7 3.5541 3.4276 ÿ3.560 3.3296 ÿ6.318 3.4840 ÿ1.972 3.5104 ÿ1.229
0.8 3.9125 3.7873 ÿ3.201 3.6743 ÿ6.087 3.8440 ÿ1.750 3.8704 ÿ1.075
Quarter point element

0.2 2.7760 2.7239 ÿ1.877 2.7107 ÿ2.352 2.6547 ÿ4.370 2.6847 ÿ3.289
0.3 2.8672 2.8084 ÿ2.052 2.7954 ÿ2.506 2.7392 ÿ4.466 2.7691 ÿ3.420
0.4 2.9887 2.9329 ÿ1.866 2.9189 ÿ2.337 2.8614 ÿ4.258 2.8914 ÿ3.255
0.5 3.1360 3.0690 ÿ2.138 3.0505 ÿ2.727 2.9898 ÿ4.661 3.0198 ÿ3.705
0.6 3.3152 3.2527 ÿ1.885 3.2297 ÿ2.579 3.1659 ÿ4.504 3.1959 ÿ3.599
0.7 3.5541 3.4810 ÿ2.056 3.4491 ÿ2.955 3.3798 ÿ4.905 3.4098 ÿ4.061
0.8 3.9125 3.8486 ÿ1.633 3.8085 ÿ2.658 3.7316 ÿ4.623 3.7616 ÿ3.856
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compute the SIFs. Notably, in the present analysis the number of nodes employed is 100 as
against 524 used by Sethuraman [27].
In the case of the angled crack, the results (Table 2) are compared with the analytical results of

Kitagawa et al. [29], which are based on conformal mapping technique with an accuracy better
than 0.5%. In this case too the comparison of displacement at the second corner node is
preferable to the ®rst corner node. The accuracy is further improved when the MCCI technique is
employed. The maximum di�erence in Y is around 5%, 3.2% and 2%, respectively, when the
linear, quadratic and quarter point elements are used for a/W=0.2 and the entire range of y. A
better agreement with the reference solutions is again observed for a/W=0.4 and 0.6 (Table 3).
In the example of centre crack under ¯uid pressure (Table 4), the computation of SIFs with and

without the inclusion of the crack edge loads in the MCCI method provides a measure of the
contributions of the external loads on the crack edges. This contribution is around 3% for the
quadratic and quarter point elements and about 1.5% for the linear element. This problem has
been studied earlier by Maiti [24] using the FEM. The number of degrees of freedom used by him
is 942 and the computed SIF has an accuracy of 0.3%. In the present case, the number of degrees
of freedom is 96 and the highest accuracy, which is 0.85%, is achieved employing the quadratic
elements.
In the example of radial inner edge crack (Table 5), the contributions of external loads acting

on the crack edges is less signi®cant than in the earlier case. This e�ect is about 1% for the
quadratic and quarter point elements, and 0.6% for the linear element.
In the example of kinked crack there is a stress singularity at the knee over and above the

crack tip stress singularity. The FEM solution of Tracey and Cook [31], which didn't model
this knee singularity, di�ers from the reference solution by 4%. The multipoint singularity

Fig. 6. (a) Edge kinked crack and (b) boundary element mesh over crack span.
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elements were employed by Maiti [32] to take care of both the knee and crack tip singularities.
In his analysis [32] 754 degrees of freedom were used and the reported results show the
maximum di�erence of 0.9% from the reference solution. In the present study, the knee
singularity is not modelled. The number of degrees of freedom is 200. The maximum
di�erences (Table 6) are 2% and 2.5% with the reference solution for the quadratic and
quarter point elements, respectively.

5. Conclusions

A boundary element based formulation to evaluate the SIFs under remote and/or crack edge
loading through the MCCI technique is proposed. Five case studies have been presented to
demonstrate the accuracy of the scheme. The results show that MCCI technique helps in
improving the computational accuracy of the SIFs. In the case of ¯uid pressure type of loading
on the crack edges there is an extra contribution to the crack closure work. This must be
accounted for a better accuracy of the results. An analysis of the mixed mode problems is as
usual facilitated by the subregion technique. However when the crack closure integrals for an
in-plane extension are to be evaluated the given domain must be split into subregions carefully.
There must be a common interface aligned with the original crack line and extending ahead of
the crack tip.
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