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Abstract-The fourth-order Runge-Kutta method has been the preferred numericaI integration scheme 
for solving chaotic problems in non-linear systems. This method is very accurate, but requires very small 
time-steps and four equation solutions per time-step. These drawbacks hinder the solution of chaotic 
problems in multi-degree-of-freedom (MDOF) systems. This paper presents the solution of the chaotic 
problem of impacting single-degree-of-freedom (SDOF) oscillators, using the Newmark method which is 
computationally efficient and unconditionally stable. The scheme incorporates an equilibrium iteration 
and variable time-stepping algorithm based on a convergence criteria which ensures that solution errors 
are minimized at each step. The results are compared with those obtained from the fourth-order 
Runge-Kutta method. It is concluded that the Newmark method with an adequate check on the solution 
accuracy could give qualitatively the same results as the Runge-Kutta method. The method has the 
advantage of an extension to MDOF real-life problems of chaos which could be solved using numerical 
techniques like FEM with limited computing effort. Such an extension is being pursued separately. 

1. INTRODUCTION This paper is the result of our attempt to identify 

The solution of the chaotic vibration of non-linear 
mechanical systems involves the numerical inte- 
gration of the governing equations of motion over a 
large time duration. This time duration should be 
adequately large to ensure that the transients die 
down and the solution captures the steady-state 
chaos. This demands that the integration scheme be 
stable and accurate without rendering the time-step 
too small. 

Almost all the chaotic vibration problems reported 
in the literature use the fourth-order Runge-Kutta 
numerical integration scheme for solution [1 ,2]. This 
has been the preferred algorithm since the scheme 
gives an accuracy of the order of (At)4. However, this 
requires rather small time-steps. Normally this is of 
the order of 1/100th the forcing period or even 
smaller for the solution of single-degree-of-freedom 
(SDOF) systems. The solution scheme also calls for 
four equation solutions per time-step. 

Mathematical models of engineering structures 
generally produce 'stiff equations', i.e. the highest 
natural frequency is much higher than the lowest one. 
So, the solution of multi-degree-of-freedom (MDOF) 
real-life structures would need time-steps which are a 
small fraction of the lowest natural period. This 
makes the solution of MDOF chaotic problems a 
very formidable task and so this has restricted the 
study of chaos to single or limited degrees-of-freedom 
models. 

a more efficient integration scheme which would 
render the long duration solution of MDOF prob- 
lems of chaos in impacting oscillators within easy 
reach. The actual solution of MDOF problems is 
being presented separately. 

1.1. Choice of the scheme 

A number of integration schemes are in use in the 
finite element method (FEM) solution of dynamic 
problems [3-6]. Belytschko [S] has made an excellent 
review of the various numerical algorithms used in 
the FEM and has also described the advantages and 
disadvantages, and the stability and accuracy of these 
schemes. The paper also gives guidelines for choosing 
the appropriate integration method for a problem, 
The problem of chaos in impacting oscillators clearly 
falls into the category of 'inertial problems' (the other 
category being the wave propagation problem) and so 
an implicit time integration scheme would be appro- 
priate. Of the many implicit schemes in common use, 
the Newmark method [7] with operator constants of 
(S = 0.5 and a = 0.25 has been found to be uncondi- 
tionally stable [S, 6, 10,121. There are many success- 
ful applications of this technique for impacting 
problems [9-111. There have also been attempts to use 
the technique for continuous non-linear problems, 
Reinhall et al. [8] have studied the applicability and 
the errors introduced in solving a continuous Duffing 
equation. 
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The authors have studied the applicability of the (11) 

Newmark method with an error control scheme for 
SDOF impact oscillators. This has been a natural 
corollary of the scheme proposed earlier [9-Ill], The 
earlier studies on this scheme have been to estimate 
the impact forces in systems. It appears that no long 
duration solution was attempted to study the re- 
sponse of the structures themselves especially when 
excited by a harmonic force. 

2. SIMULATION OF A SDOF IMPACT OSCILLATOR 

A typical model of a SDOF impacting oscillator is 
shown in Fig, 1. 

2.1. Governing equations of motion for a linear SDOF 
system 

The dynamic equilibrium equation for a linear 
SDOF system can be written as 

where K is the stiffness, C is the damping coefficient, I 
and M the mass. y, y, ji are the displacement, velocity 
and acceleration, respectively, of the mass, and P ( t )  Fig. 2. (a) Single-sided restraint. (b) Double-sided restraint. 

is the external load. 

2.2. Sirnulalion of impact 
where Km and C,, are the local stiffrness and darnp- Restraints with gaps are simulated by a piecewise 
ing shown in Fig. 1. The characteristics of the spring linear spring as illustrated in Fig. 2. 
with stiffness 1Y, are as shown in Fig. 2. Any energy loss during impact could be simulated 

by a local damper in parallel to the non-linear spring 
in Fig. 1. 3. NUMERICtat MTEGRATXCPN SCHEME USING THE 

NEWMARK METHOD 

2.3. Equations of motion of impacting oscillator 
The solution of eqn (2) has to be carried out 

The equation of motion (1) can now be written as numerically. The Newmark method [7] with operator 
constants of 6 = 0.5 and a = 0.25 which is an uncon- 

iMji + C2j 4 C,,y + Ky + iY,,y = P(t) ,  (2) ditionally stable scheme, is used for the solution. 

Fig. I. SDOF impacting oscillator. Fig. 3. Sample problem. 
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2.5 k 1 
354.84 534 703.75 1017.8 

T Fig. 6. Time history with Runge-Kutta simulation, 
Fig. 4. Time history of the response of mass as solved by 

the Newmark method. 

The integration scheme can be summarized as 
follows. Assume 

where 6 and a are parameters chosen by the analyst. 
These parameters determine the accuracy and stab- 
ility of the scheme. For unconditional stability 

6 2 0.5 and a 3 (26 + 1)2/16. 

Artificial positive damping is introduced if 6 > 0.5 
and negative damping of 6 ~ 0 . 5 .  If 6 =0.5 and 
a =  0, the method reduces to the central difference 
method, another integration scheme used for solving 
wave propagation problems and other non-linear 

problems by the FEM. If 6 = 0.5 and ct = 116, the 
scheme becomes the linear acceleration scheme which 
is conditionally stable. If 6 = 0.5 and a = 0.25, the 
method is found to be unconditionally stable. The 
scheme with these values for the parameters is also 
called the constant acceleration scheme or the trape- 
zoidal method. It is also seen that with these values 
of 6 and a, there are no amplitude errors introduced 
for linear problems. 

3.1. Implementation of the Newmark scheme for the 
solution of SDOF impacting oscillator 

The equation of motion (2) can be written for any 
time t + A t  as 

Fig. 5. Poincard map with Newrnark method of solution. 



Fig, 7, Poincar6 map with Runge-Kutta simulation. 

Transferring the non-linear contributions to the Ft + ,, = equivalent load 
right-hand side (RHS), the equation could be written 

f M j i t + b r ~ C ~ t + d t + K ~ r e ~ t = P ~ + d r " - F ~ ~ I + ~ , s  f6) 

There is an advantage of computation in 
transferring the nun-linear terms on the RHS as 6 
equivalent load. While solving MDOF problems, F,,$ + ,  = Kay,,,, + CNLyt + 
this would eliminate the need for reforming of K 
matrix. The above equation (5) can be represented 
as f3991 

where 

(7) 
The solution at time-step t + At is iterative in nature 
as the non-linear stiffniss and damping forces are 
dependent on the displacements being computed. The 
initial value of F,, for the iteration is obtained by 
linear extrapolation of Fa at t and t - As'. 

The convergence of the iteratian is measured by the 
ratio of the difference between the current and pre- 
vious iterates for F,, to the current value of Fa. A 

Table I 

a = equivalent stiffness 

Method No, of load cycles Execution time? 

1. Newmark method with non-linear 
force and equilibrlwn iterations 
with anowable half-step error of 

(a) 1% of external load 
(b) 2% of ext. load 
(c) 10% of ext, load 

4 min, 02 sec 
3 min, 44 see 
3 min, 05 sec 

2. Fourth-order, Runge-Kutta Gill 1111 1 f min, 12 see 
method with 20-00 time-steps per 
load cycle 

t On an WP-micro 1000 A7QO cornputer system. 
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Fig. 8. Poincark map using Newmark method with half step error tolerance of 10% of excitation. 

mathematical treatment to prove that such an y, + ,, = y, + ( y, + ,, - y,) - A + 3, (1 - A2) 
iterative scheme converges is dealt with in [9]. It 
is shown that as long as K U / R  is kept much less At2 
than one the solution converges. (For the solution n A t  +ji,(i - n ) - a 2 . T  

reported in the paper, a value of 0.01 has been used 
for KNL/K. )  It is seen that convergence of the order (Y,+c - ~ t )  . & f + j ,  1 - - 
of 1 x low6 is normally achieved within a few iter- Y ~ + M ,  = =At 
ations. If not, the time-step is halved to increase the 

( :A2) 

value of X [refer to eqn (7)] which accelerates conver- 
gence. + jjt(1 - 2 ) ~ t .  

From the solution obtained for y, + ,, , the y,+,, and 
.f,+A, be from eqns (3) and (4). These could be used to calculate a 'residual' at any 

time within the time-step. That is 
3.2. Time-step error control 

In addition to the control on step length to ensure 
convergence of FNL7 the errors associated with a 
time-stepping solution need to be controlled. Ma and 
Bathe [lo] and Belytschko and Schoeberle f12] have 
used an energy balance criteria to check and improve 
the accuracy of the solution. However, both the 
methods apply the error correction on the displace- 
ments keeping the time-step constant. However, Hib- 
bit and Karlsson [1 l] and SauvC and Teper [9] used a 
variable time-stepping algorithm based on the error 
in the equations of motion at half-time-step. The 
concept is as follows. 
By solving the dynamic equilibrium equations at 

discrete steps, it has been ensured that the system is 
in equilibrium at either end of any step, i.e. at t and 
t t At. The Newmark method (trapezoidal rule) al- 
lows one to obtain the displacement, velocity and 
acceleration at any intermediate point assuming lin- 
ear variation of the acceleration within a step. For 
any intermediate point t + AAt, they can be derived 
as 

Based on numerical experiments, it has been re- 
ported [9,11] that this residual increases at a fast rate 
when the error associated with the time stepping 
solution becomes significant. Hibbit and 
Karlsson [1 1] have found that if the half-step residual 
is of the order of 0.01 P, the time stepping solution has 
high accuracy. Sauvt and Teper [9] have used a 
tolerance on the residual based on the maximum 
forces that occur in the solution. They also caution 
about too small a tolerance on the residual as they 
feel that the tolerance may be related to the terns 
higher than second order in the Taylor series expan- 
sion for displacement and acceleration. So, too small 
a tolerance could result in no satisfaction of the 
criteria of the algorithm even though the solution 
could have high accuracy. 

The effect of this tolerance has been studied by the 
authors while solving the sample problem reported in 
this paper. It is found that specifying the tolerance 
based on the forces at the particular step gives 
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excellent results. Accordingly, the solutions reported 
here have been carried out with a tolerance of 0.02P 
with A = 0.5. 

A tolerance as high as even 0.1 P gives qualitatively 
the same results as above. This could be explained 
by the fact that increasing the tolerance and hence 
the time-step is equivalent to providing higher damp- 
ing at higher frequencies 1131 when solution is carried 
out using the Newmark method with 6 = 1/2 and 
ol = 114. 

methods. Since the response is chaotic, the solutions 
cannot be compared numerically. However, graphical 
comparison of the two solutions can be made[l5]. 

Figure 4 shows the time history response and Fig. 5 
shows the Poincark map at every 45" phase increment 
for the Newmark solution. Figures 6 and 7 show the 
corresponding solution by the Runge-Kutta Method. 
Both the results are for values of 0 = 2.4 and 
x, = 3.7. 

On a scrutiny of Figs 4-7, the following could bpi 
observed: 

4. NUMERICAL INTEGRATION SCHEME BASED ON THE 
FOURTW-ORDER RUNGCKUTTA METWOD (a) The Newmark method produces results which 

are comparable qualitatively with the results obtained 
To assess the Newmark method, the same problem by RungeKutta simulation, 

of SDQF impact o~cillator Was solved using the (b) There could be considerable saving of the 
Runge-Xlutta methods. computer effort by the use of the Newmark method 

for this class of problems. For completeness, Table 1 
4.1. Formulation of the SDOF impact oscillator gives the execution time for the two methods. It could 

The governing equation of motion (2) ~ould be k argued that Runge-Kutta solution scheme could 
written as three first-order differential equations as have been carried out with larger time-steps, How- 

ever, the present study is to assess the Newmark 
f 1 = x2; 22 = - fi, - Cx, + PO - Px;  = a, method's ability to solve chaotic problems. Such an 

where 

Po = -mo2x,  sin z 

P,,= 0 for x, <gap 

= KNL (x, - gap) for x, > gap. 

4.2. Solution scheme 

There have been many adaptations of the classical 
Runge-Kutta method to gain different advantages. 
The sample problem presented in the subsequent 
section has been solved by the classical Runge-Kutta 
method and the Gill method with comparable results. 
The Gill method is said to have additional advantages 
of less storage registers, control of the growth of 
rounding off errors, stability and economical compu- 
tation [14]. So this has been used for comparing with 
the Newmark method. 

4.3. Choice of step length 

Since there is stiffness change at a particulat value 
of displacement, the time-step has been chosen as 
11200th of the loading period. It could have also been 
solved using different time-steps at the different stiff- 
ness regions, However, since the aim of the study has 
been to confirm the ability of Newmark's method to 
solve chaotic problems, such a simplified but small 
time-step solution would provide an adequate basis 
for comparison. 

assessment would be the first step towards solving 
actual chaotic problems through techniques like 
FEM, for which integration schemes like the 
Runge-Kutta method are known to be not very 
efficient [4]. 

(c) As brought out in See, 3.3, the error tolerance 
on the ~ewmaik  method could be perceived as higher 
damping at higher frequencies [l3]. Figure 8 shows 
the Poincare map at 0 = O when solved using 
a half-step tolerance of 10% confirming such a 
perception. 

6. CONCLUSIONS 

Solution of the chaotic vibration problems in none 
linear systems involves the numerical integration of 
the governing equations of motion over a large time 
duration. To capture the characteristics of chaotic 
motion, it is necessary to solve for a Iarge nurnber of 
load cycles after the transients have died down. This 
study shows that computationally efficient inte- 
gration schemes like the Newmark method could be 
adopted for the class of impacting oscillators. The 
results from this solution scheme are qualitatively the 
sane as the fourth-order Runge-Kutta scheme. Such 
efficient schemes are expected to ease the solution of 
chaos in continuous and multi-degree-of-freedom 
systems, which are currently being attempted by the 
authors. 
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