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AibsBffaet-The solution of the chaotic vibration of non-linear mechanical systems involves the numerical 
integration of the governing equations of motion over a large time duration. This time duration should 
be adequately large to ensure that the transients die down and the solution captures the steady-state chaos. 
This demands that the integration scheme be stable, and accurate. The scheme which has found wide 
acceptance for chaotic problems is the fourth-order RungeKutta method. 

However, the Runge-Kutta method is not a preferred integration scheme for engineering solutions 
because it calls for four equation solutions per time-step and a small time-step to get accurate results from 
'stiff equations' produced by the engineering structures. These drawbacks have restricted the study of 
chaos to single-or-Gmited number of degrees of freedom, 

This paper is an attempt to solve the chaotic vibration problem of structures with non-linear boundary 
conditions by the finite element method. The solution is attempted for the mtilever beam with one 
side-stop for which experimental results are available in the literature. This particular class of non-linearity 
has been chosen because of its abundance in and significance to the real-life structures. 

The authors' study shows that the temporally discrete solution of the spatially discrete model could 
capture the phenomenon of chaos. The authors expect this study to be useful for identifying the chaotic 
regimes for these structures in the physical coordinates of forcing amplitude and frequency. This, in turn, 
could be used for a more accurate prediction of fretting wear-limited life of these components. 

I. INTRODUCTION highly restricted, The present-day techniques seem to 

There are many mechanical systems which allow 
some play between the assembled components. 
Although the small clearances may not always be a 
design requirement, it is not possible to eliminate 
them totally due to the manufacturing tolerances. 
There are also systems where a predefined gap or 
clearance is provided by design. The gap between 
heat exchanger tubes and the baBe plates, between 
pipe-lines and snubbers, between components and the 
displacement arrestors, etc., are all examples of sys- 
tems with designed clearances. These clearances pro- 
duce a non-linear boundary condition which could 
lead to chaotic response as demonstrated by Moon 
and Shaw [1] for a-simple cantilever. 

There have been many attempts to simulate by the 
finite element method, the dynamic behaviour of such 
systems with gaps[2-lo]. However, most of them 
attempt to extract information regarding maximum 
contact force which could be used to predict the 
fretting wear-limited life of the system. It appears that 
the analysis to study the characteristics of the long 
duration response themselves have not been pursued 
much, which in many cases could be chaotic. 

Even though many engineering systems with non- 
linear boundary conditions could cause chaotic re- 
sponse, the study of chaotic vibrations has been 

attempt solution of highly simplified single degree of 
freedom or very limited number of degrees of free- 
dom models through integration schemes like the 
fourth-order Runge-Kutta method. There has been 
no attempt to study such systems through popular 
numerical techniques used by engineers for dynamic 
simulation of structures. The motivation for this 
study has been the identification by Moon [1 11 of tests 
to confirm whether these can also give solutions 
where the response is known to be chaotic. 

This paper is an attempt to simulate the interaction 
of the cantilever beam with one-side stop, studied by 
Moon and Shaw [l], by the finite element method. 

2. FINITE ELEMENT MODEL 

The equations of equilibrium for a system assem- 
bled by a set of finite elements could be written 
as [12-151 

where [a is the stiffness matrix of the assembly, [Cj 
is the damping matrix, [MI is the mass matrix, [PI is 
the external load vector at time t + At, and (y ), + ,, , 
{)'It + At,  {y  h +A, are the displacement, velocity and 
acceleration vectors at time t + At. 



2.1. Stifnew matrix [k] 
The formation of a stiffness matrix for a straight, 

uniform beam element has been discussed in detail by 
many authorsil2-15). For the beam studied by 
Moon and Shaw [1], no effect of transverse shear 
deformation or axial load need be considered. 

2.2. M m  matrix [MI 

]In the finite element formulation of the mass 
matrix, there are two approaches [12, 13, 15, 161-the 
lumped mass and the consistent mass. The most 
common approach is the 'lumped mass' wherein the 
inertia forces are considered as part of the b d y  
forces. 

An excellent review of the advantages and disad- 
vantages with respect to accuracy and computational 
effort of the two methods of defining the mass matrix 
is available in 11 35. 

The applicability of the two approaches for the 
particular problem of a beam with non-linear support 
conditions has been studied by Shin et a!. [4] in 
connection with the vibro-impact response of a heat 
exchanger tube with baffle plates. They have con- 
cluded that lumped mass approach is appropriate for 
this class of problems. 

For the present problem under study, the transla- 
tional and rotational inertias have been lumped at 
each degree of freedom. 

2.3. Damping matrix [C] 

The various numerical treatments to account for 
damping have been reviewed in 1231. For the present 
computation, the damping matrix is formed based on 
the Rayleigh proportional damping where the damp- 
ing matrix is a linear combination of mass and 
stiffness matrices 

The constants f? and y are determined from two 
known values of frequency and modal damping ratio. 
For the solution of the problem reported here, a value 
of fi  = 0 and y = 3.146 x has been used. This 
corresponds to a modal damping constant (2wg) of 
0.017 for the first mode obtained in the experiment 
reported in [l]. 

3. SIFufULA'PTION OF NON-LINEAR BOUNDARY 
CONDITIONS 

Restraints with gaps are simulated by an element 
of non-linear stiffness KNL . The non-linear element 
can be described in terns of piece-wise linear force- 
deflection curve as shown in Fig. 1. The energy loss 
in impact is represented by a local damper of value 
C,,. Such a scheme of representation has given 
acceptable results as reported by Sauvk and Teper 181 
and Hibbit and Karlsson [6]. 

Fig. 1. Simulation of gap. 

However, Fricker [24] suggested the following 
forcedeflection relationship. 

where F  is the contact force, k is the stiffness, Ur is 
the relative displacement between the two contacting 
surfaces, and g is the gap. 

For the present problem of cantilever both the 
above representations have been studied. It is seen 
that the linear representation gives a Poincari plot 
closer to the experimental Poincark plot obtained by 
Moon and Shaw [I]. 

The equation of motion (I) can now be written 
separating the linear and non-linear contributions 
and including the Rayleigh damping as 

In the present problem, the non-linearities KNL and 
CNL are confined to just one node. To avoid the 
reformation of the stiffness matrix and its solution, 
the non-linear contributions can be transformed into 
an equivalent non-linear load. Thus, eqn (1) becomes 

=Pt+Af-FNL, (4) 
where 

FNL = KNLY~+ ,, + CN.LY[ + A , .  

4. SOLUTION SCHEME 

To obtain the solution of the governing equations 
of motion, a numerical integration technique is used. 
The step-by-step integration method can be applied 
either to the coupled equations of motion as in eqn 
(4) or the uncoupled equations of motion after modal 
decomposition by the mode superposition method. 

For linear systems with few and well-defined modes 
contributing to the total response, the modal super- 
position method could give reasonably accurate re- 
sults. The method has the advantage of greatly 
reduced computing effort. The modal superposition 
method has been used by many to solve nun-linear 
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boundary condition problems as well[24,27]. 
However, as Fricker [24] concludes further work is 
required to validate the method for impacting oscil- 
lators under harmonic loading. Applicability of mode 
super-position method for chaotic vibration problem 
is being studied separately. However, since the direct 
integration of the coupled equations of motion in- 
cludes the response in all the frequencies, it is con- 
sidered appropriate for the problem of chaotic 
vibrations. 

Of the direct step-by-step integration procedures, 
the fourth-order Runge-Rutta method seems to be 
the preferred algorithm for chaos in lower order 
systems. It has an error of the order of (At)5, but 
requires four equation solutions per time-step. The 
finite element model of structures produces stiff 
equations, i.e. they characterize structures whose 
highest natural frequency is very much greater than 
the lowest (o, 9 o~,). Even for solving linear 
problems by Runge-Kutta method, such stiff 
equations need very small time-steps and so the 

Newmark's method reduces to the central difference 
method which is an explicit method and found usefuI 
for wave propagation problem. If 6 = 0.5 and 
a = 116, the scheme becomes the linear acceleration 
scheme which is only conditionally stable. If 6 = 0.5 
and a = 0.25, the method is proven to be uncondi- 
tionally stable. The method is, then, called the con- 
stant average-acceleration method or the trapezoidal 
method. It is also seen that with these values of 6 and 
a, there are no amplitude errors introduced for linear 
problems, 

The present problem of the cantilever represented 
by eqn (4) when operated on by eqns (5) and (6) could 
be shown to be 181 

K ~ y l + A t =  F t + A r - F N L ,  (7) 
where 

method is not very popular for FEM applications. and 
For non-linear chaotic problems, modelled by FEM, 
the time-step would be too very small to undertake 
any long duration solution. 

Belytschko [22] has discussed the advantages and 
disadvantages and the stability and accuracy of 
the commonly used numerical algorithms in FEM. + {A -4 -%))Y, 
Belytschko also gives guidelines for choosing the 
appropriate integration method. The problem of the 

+ {?+) - - !!)}jt] beam with a side-stop clearly falls into the cateogry 
of 'inertial' problem and so implicit time inlegation 
is the appropriate one for the solution. 

A number of implicit integration schemes are in 
+ K[*yt a At + (: - 1)yyt 

common use in FEM and they have been reviewed by 
many [12,13,22,26], It has been found by many 
[9,12,22,25,26] that Newmark method 1281 with op- 
erator constants of 6 = 0.5 and a = 0.25, which is 
unconditionally stable, is appropriate for this class of cli 

FNL, +&, = KNLY~ + AI + CNLYH-A~ 
problem. This scheme has also been assessed for its 
applicability to this class of chaotic problems by the 
authors through solution of SDOF models. 

4.1. The integratim scheme 

The integration scheme is as summarized below. 
The method is based on the assumption 

where a and S are parameters to be chosen by the 
analyst. These parameters determine the accuracy 
and stability of the scheme. For unconditional 
stability 

S 30.5 and a >,(26 + 112116. 

Artificial positive damping is introduced if 6 > 0-5 
and negative damping if 6 < 0.5. If 6 = 0.5 and a = 0, 

The solution at time t + At is iterative in nature 
because non-linear stiffness and damping forces are 
dependent on displacement. The initial trial value of 
FNL for the iteration is obtained by linear extrapol- 
ation of PNL at t and t - At. 

The convergence of the iteration is measured by the 
ratio of the difference between the current and the 
previous iterates for F,, and the current value of FNL. 
The convergence of the order 1.0 x is normally 
achieved within a few iterations. If not, the time-step 
is reduced which hastens the convergence. A math- 
ematical treatment of such a convergence criterion is 
dealt with in [8]. 
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Fig. 2. FEM model of cantilever beam with one-side stop, 

4.2. Time-step error control 

In addition to the control on step length to ensure 
convergence of I;,,, the errors associated with time 
stepping solution need to be contained. Ma and 
Bathe [lo] and Belytschko and Shoeberle [25] have 
used an energy balance criteria to check.and improve 
the accuracy of the solution. However, both the 
methods apply the error correction on the displace- 
ments keeping the time-step constant. However, Hib- 
bit and Karlsson [ti] and SauvC: and Teper [8] used a 
variable time-stepping dgorithrn based on the error 
in the equation of motion at half-time step. The 
concept is as follows. 

By solving the dynamic equilibrium equation at 
discrete steps, it has been ensured that the system is 
in equilibrium at these times, namely, t ,  t + At, 
t + 2At, etc. The Newmark method (trapezoidal rule) 
allows one to obtain the displacement, velocity and 
acceleration at any intermediate point assuming a 
linear variation of the acceleration between two 
solution points. For any point t + AAt, they can be 
derived as 

These could be used to calculate a 'residual' at any 
time within the time-step. 

Based on numerical experiments, it has been re. 
ported [6, 81 that this residual increases at a fast rate 
when the error associated with the time-stepping 
solution becomes significant. Karlsson and Hibbit [6] 
have found that if the half-step residual is of the order 
of 1.0 x 10-?P, the time-stepping solution has ex& 
lent accuracy. Sauve and Teper 181 have used a toler- 
ance on the residual based on the maximum forces 
that occur in the solution. They also caution about 
too small a tolerance on the residual as they feel that 
the tolerance may be related to the terms higher than 
second order in the Taylor series expansion for 
displacement and acceleration. So, too small a toler- 
ance could result in no satisfaction of the criterion of 
algorithm even though the solution could have good 
accuracy. 

The effect of this tolerance hns been studied by the 
authors for impacting SDOF ascillators. It is found 
that specifying the tolerance based on the forces at 
the particular step gives excellent results. A tolerance 
based on the maximum farces that occur in the 
solution, as suggested in 181 is too coarse, Accord- 
ingly, the solutions have been carried out with a 
tolerance specified as 

max. of f % of [(P - FNL) spring force, damping 
force, inertia force] 

for each translational and rotational DOF. 

5. FEM MODEL OF THE CANTILEVER BEAM WITH 
ONE-SIDE STOP [I] 

For a uniform cantilever of the geometry con- 
sidered in [I], the theoretical natural frequencies are 
5.34, 33,38 and 93.6 Hz. However, Moon and 
Shaw [1] have measured the natural frequencies as 
4.3, 26 and 73 Hz. Such reduction from theoretical 
natural frequencies is very common in engineering 
structures. This is due to the small rotations that are 
rendered possible at the clamped end by the assembly 
methods adopted. This could be modelled analyti- 
cally by incorporating a rotational spring of appro- 
priate stiffness at the support location fl8-201. TO 

Fig. 3. Time history of strain for forcing frequency of 
- Pt + ; l ~ t  f FNL, + A  A, 10.5 HZ and forcing amplitude of 3.7 mm peak-to-peak. 



Chaotic vibrations of a beam 593 

Fig. 4. PoincarC map of fixed end strain of the cantilever Fig. 6. Poincari: map of fixed end strain of the cantilever 
with one-side stop [I]. Forcing frequency = 10.5 Hz. Forcing with one-side stop [I]. Forcing frequency = 10.2 Hz. Forcing 

amplitude = 3.7 rnm peak-to-peak. amplitude = 4.0 mm peak-to-peak. 

determine the appropriate value of rotational spring 
stiffness, the cantilever was modelled as shown in Fig. 
2 and solved for eigenvalues using SAP-IV [21]. A 
spring stiffness of 0.93 kg cmlrad for the boundary 
element realizes nearly the same natural frequencies 
as obtained experimentally in [l]. 

5.1. The stiffness of side stop 

The goal of the side stop had been to provide a 
hinge support thereby obtaining a bilinear system [I]. 
The stiffness of the spring simulating the side stop has 
been derived by use of a boundary element of SAP- 
IV[20] at the free end of the cantilever. Twice the 
lowest stiffness of the boundary element for which the 
natural frequency goes up by a factor of 4.375 (i.e. 
f, = 18.8 Hz corresponding to a clamped-pinned 
case) has been used for the analysis. The actual 
stiffness of the stop could have been higher. The 
higher stiffness could result in the dominance of 
contribution from higher modes. However, Moon 
and Shaw [I] have filtered out the higher frequency in 
the results reported. It was, therefore, felt that use of 
a stiffness value higher than this may not be necessary 
for the present study. The actual value of stiffness 

Fig. 5.  PoincarC map of fixed end strain of the cantilever 
with one-side stop [I]. Forcing frequency = 9.8 Hz. Forcing 

amplitude = 4.00 mm peak-to-peak. 

would however be important if the impact load and 
fretting wear estimates are to be made. 

6. RESULTS 

The results of the analysis for the four-element 
model shown in Fig. 2 are presented through the 
following figures. Figure 3 shows the time history of 
strain for excitation at 10.5 Hz and excitation ampli- 
tude of 3.7 mm peak-to-peak. Figure 4 shows the 
PoincarC map for excitation at 10.5 Hz and 3.7 mm 
peak-to-peak. Figure 5 shows the Poincart: map for 
excitation at 10.2 Hz and 4 mm peak-to-peak. Figure 
6 shows the Poincart map for excitation at 9.8 Hz and 
4 mm peak-to-peak. Figure 7 shows the Poincart: plot 
for excitation at 10.5 Hz and amplitude of 3.7 mm 
peak-to-peak when the number of elements was 
increased to 15. With a large number of elements, the 
time-step becomes too small. To get over the problem 
the half-step tolerance has been increased to 10%. 
However, it is noted that the frequency range of 
chaos shifts slightly as the number of DOF and errors 
are increased to these values. This could also partly 
be due to deviation in the FEM model such as the 
mass of shim steel used for damping which has not 
been included in the model. 

Fig. 7. Poincari map at Fig. 3 with 15 element simulation. 
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Fig. 8. PoincarC map of Fig. 4 for a three-element model. 

Figures 8 and 9 shows the Poincark plots when the could incorporate the non-linear damping CNL, it was 
number of elements was reduced to three. Figure 8 found that for significant C,, values, the half-step 
corresponds to an excitation of 3.7 mm peak-to-peak error criterion is not easily satisfied. Still, the solution 
at 10.5 Hz and Fig. 9 to an excitation of 4.0 mm reported here is good enough for engineering appli- 
peak-to-peak at 9.8 Hz. These were solved with a cations where the chaotic regimes are to be identified. 
half-step tolerance of 1 %. In addition, since the response of the structure is 

chaotic, such scatter is not expected to affect any 
engineering conclusions derived from these response 

7. DISCUSSION 

Figures 10-1 2 show the experimental Poincarh 
plots presented in [I]. It can be observed on a corn- 
parison that the analytical results agree well with 
them. However, there are slight deviations like the 
scatter of the Poincarb points when the beam top is 
near the stops. This may be because the aluminium 
stops used in the experiment provides a Large local- 
ized damping. Even though the formulation used here 

data. 
It is also observed that- the spatial discretization, 

even if coarse, captures the chaotic response, as seen 
from the solution of a three-element model, It may, 
however, be cautioned that the comparison is based 
on experimental results where the signals were low 
pass filtered around 40 Hz. Since higher modes can 
contribute significantly to stress, the spatial dis- 
cretization has to be finer if the signals are unfiltered 
or filtered at higher frequencies. For such a case, it is 

Fig. 9. Poincarb map of Fig. 5 for a three-element model. 
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. ' a "  : ' .  Such mde1s may not be useful to identify the regimes 
. . . of chaos in the forcing-amplitude frequency planes. 
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e h l . l * d X  6 X s 4 . 1 1 . Y 1 1 1 . v  ll:.L;.l..:lll..: 'There are many engineering systems with design/ 
manufacturing clearances, leading to non-linear sup- 
port conditions and their chaotic regimes could be 
identified by a method of analysis similar to one 
reported here. Such analysis could become a signifi- 
cant input for a realistic prediction of the fretting 
wear limited life of the components, in case the 

F~E, 10. EsprimcntaI Ptsinrar6 map [ l J  carrespanding to response is chaotic. 
Fig. 4. 

Fig. I f , Exvrimcntuf FrtjincarO map f t ] eorrespnnding to 
Fig. 5, 

also necessaq to  inrc~rpa4hrrrft ahc appropriate values 
of lYM a d  C%. 

During the solution of" various models, it was 
always found that  pried four motion hcomes 
chaotic with increase of excitation. No period six 
motion was observed as repcarted in [If.  The authors 
could not offer any cxplnxlation fur this* 

Based on above discussion, it could bc: cctncluded 
that finite element method is capable of solving the 
dynamic respans prnbfems which could be chaotic. 
In other words, a spatialiy discrete representation and 
a temporarily discrete sotuition is capable of capturing 
the phenomenon nf chaos in continuous elastic sys- 
tems. Adequate checks have ta be- incarporated in the 
solution to contain the errors within smaf l limi is. This 
Paper reports one such tool to study chaotic problems 
of one particular cIass. 

To the best of our knowledge the chaotic responses 
have been solved only fur very simplified models. 

Fig* 12. Experimental Poincare map ft] comsponding to 
Fig, 5, 
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