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ABSTRACT

Three-dimensional transient analysis of a submerged cylindrical shell is presented. Three-dimensional
trilinear eight-noded isoparametric fluid element with pressure variable as unknown is coupled to a
nine-noded degenerate shell element. Staggered solution scheme is shown to be very effective for this
problem. This allows significant flexibility in selecting an explicit or implicit integrator to obtain the solution
in an economical way. Three-dimensional transient analysis of the coupled shell fluid problem demonstrates
that inclusion of bending mode is very important for submerged tube design—a factor which has not
received attention, since most of the reported results are based on simplified two-dimensional plane strain
analysis.
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INTRODUCTION

Transient analysis of submerged structures and components is an important problem which has
been the focus of research activity’~!? in the last two decades. The dynamic behaviour of
structures is well understood if the surrounding fluid is known to have negligible coupling effect.
However, the dynamic behaviour of the submerged structure is significantly affected- if the
displaced fluid mass is significant compared with the structure mass. Simplified added mass
analysis of coupled fluid—structure interaction problem has been attempted**~'°. However, this
approach is suitable only for those cases where fluid oscillation frequencies are well separated
from the structure predominant frequencies. The mechanism of fluid-structure interaction

problem is described by the oscillations induced in the fluid either due to structural motion or

due to some accident condition which may induce pressure pulse in the acoustic medium. The
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pressure field is influenced by the structural motion, as well as the structural motion is also
influenced by the pressure field of the surrounding fluid. Thus this transient phenomenon has
to be studied in a coupled manner. This becomes more important if coupled modes are excited
where the added mass approach or a two step decoupled analysis may become even
unconservative!=*. In the latter case the fluid response is first obtained, assuming the structure
to be rigid and the resulting pressure field is then imposed on the structure in the second step
to obtain the structural response.

Earlier studies on the fluid—structure interaction problems were made by Bathe and Hahn',
Liu and Chang?, Liu®, Belytschko®, Akkas et al.*, Wilson and Khalvati®, Shantaram et al.”
and Deshpande et al.®. The basic methodology applied in these studies is known as pseudo
elastic approach. In this method the shear modulus is set to zero in the fluid domain and the’
fluid—structure interface is constrained to have normal displacement continuity. The eigen value
analysis indicates the presence of zero energy modes as described by Akkas et al.’. Wilson and
Khalvati® have suggested a method to select an optimum penalty parameter so that these
spurious modes can be suppressed. In this approach irrotational flow condition is enforced.
Deshpande et al.® have also come out with an optimum penalty parameter to couple the structure
and fluid meshes which is a function of the density of fluid along with the acoustic speed in the
fluid medium. Au-Yang® defines this method as continuum mechanics or structure mechanics
approach. This pseudo elastic approach is suitable for a limited class of problems, such as linear
behaviour of fluid. Moreover it does not turn out to be economical for a three-dimensional (3D)
transient analysis even in the case of a linear problem due to large size of the fluid domain the
number of discrete equations become very large.

Another approach which is very promising is the method of partitioning as suggested by Park
and Felippa!’, Felippa and Geers'8. In this approach the various interacting fields are staggered
and then the field variables which are required by the neighbouring coupled fields, are transferred
mutually in a sequential manner. Historically this second approach is older than the pseudo
elastic approach the details of which can be seen in the work of Zienkiewicz et al.t?2°, They
had described a finite element formulation with pressure variable for the fluid domain and
displacement variable for the structural domain. However, this did not gain popularity until
recently. The major limitation of this approach is that the system of equations become
unsymmetric and the band width becomes very large due to the coupling terms. Paul'® has
explored this technique for two-dimensional fluid—structure interaction problems using a
staggered approach. The present authors have developed a two-dimensional fluid-structure
interaction code FLUSOL!! for plane stress, plane strain and axisymmetric problems with
continuum elements along with a three-dimensional fluid—shell interaction code FLUSHEL'?
using a method of partitioning. The band width problem is overcome by assigning a separate
equation numering system for coupling terms which are active only at the fluid—shell interface.
Three-dimensional transient analysis is carried out by integrating fluid and shell meshes at each
time step by transferring fluid pressure on the shell surface and shell normal acceleration to the
fluid domain in an iterative manner. The advantage of this method is that the number of field
variables can be optimized significantly. For example, in code FLUSHEL the fluid behaviour
is obtained by trilinear fluid elements with only pressure variable as unknown at each node
point. The structure response is obtained by nine-noded Lagrangian C° continuous degenerate
shell element. The basic shell element of Ahmad et al.?! has undergone significant improvement
over the last two decades. Studies with regard to locking behaviour and zero energy modes have
helped to improve the performance of this element. The details of this can be seen in the works
of Hughes?2, Belytschko®? and Hinton and Owen*. Performance comparison by Pugh et al.*?
has shown that out of four, eight, nine, twelve and sixteen noded quadrilateral elements,

&
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nine-noded Lagrangian degenerate shell element gives optimum combination of accuracy and
economy. Belytschko?? and Milford and Schnobrich?® have recently developed efficient
two-dimensional degenerate shell element based on explicit through thickness integration. In
code FLUSHEL we have used this shell element which results in considerable economy in terms
of CPU time and storage space particularly on small computers for three-dimensional transient
problems. The second advantage of the method of partitioning is that it is very suitable for
modular adoptation. Any fluid transient code, either based on finite difference, finite element
or boundary element can be coupled to this and the fluid—structure interaction effect can be
studied. This gives tremendous versatility for expansion of the code and transient analysis of
unexplored areas of non-linear fluid and non-linear structure can be carried out which are very
important for nuclear reactor and spacecraft safety analysis. Modular adaptation of the code
will also be very suitable for large size multifield coupled problems in parallel processing
environment?”.

Another important aspect of transient analysis is the selection of optimum integrator for
integrating ordinary differential equations (which are of second order for the present case)
resulting from semi-discretization. There are two well known methods available: implicit method
and explicit method??28-33 Implicit methods are unconditionally stable and larger time steps
are permitted depending on the order of accuracy required. This depends on the number of
significant modes which are to be included by the integrator in the numerical integration process.
This methods requires large CPU time and storage space as the resulting simultaneous equations
by temporal discretization have to be solved at each time step. On the other hand, the explicit
methods are conditionally stable and time step size depends on the minimum time period of the
mesh. The minimum period of the mesh is bounded by the minimum period of an individual
element®*. The advantages of the explicit method are that the CPU time required for each time
step is very small and the storage space is also very small, since factorization and back substitution
of coefficient matrix is not required in this case. In case of fluid—structure interaction problems
the wave speeds in the two domains are of varying order, thus a practical and economical analysis
is possible by taking advantage of both the explicit and implicit methods. Explicit scheme for
the fluid domain and implicit scheme for the structure domain give optimum combination of
computational effort, storage space and CPU time as demonstrated in this paper.

We describe the theory of the coupled shell fluid dynamics problem used in the code FLUSHEL
where shell dynamics and fluid transient problem are formulated by finite element method. We
then describe the coupled field equation solution scheme. Transient analysis of a submerged
cylindrical shell is then presented. First two-dimensional analysis is presented and compared with
the reported results. Further three-dimensional transient analysis is given where the shell is
assumed to be simply supported and clamped at ends. The analysis shows the importance of
bending mode and three-dimensional fluid field for such coupled three-dimensional transient
problems.

COUPLED SHELL FLUID INTERACTION PROBLEM

Coupled shell-fluid interaction problems can be amicably analysed by the method of partitioning
as demonstrated by Singh et al.'?. In this approach semidiscrete coupled second order ordinary
differential equations of shell dynamics and three-dimensional fluid transient are integrated by
Newmark’s method. The shell normal accelerations are transferred to the fluid domain and fluid
pressures are applied at the shell surface at each time step on the interaction boundary in an
iterative manner. The transfer of interface data from one field to another field at the interaction
boundary is carried out in an economical way by keeping only interface nodes of both the fields
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as active degrees of freedom in skyline storage scheme. This approach results into optimum
starage requirement for coupling matrices as described in this section.

Three-dimensional fluid transient analysis

The fluid transient behaviour can be efficiently obtained by using pressure formulation for
the fluid domain. This approach has certain advantages for three-dimensional problems. Here
the number of variables for the fluid domain are the minimum compared to the displacement
formulation. The pressure field obtained from this analysis can be directly used for shell dynamics
problems. The fluid field is discretized by trilinear eight noded brick elements. This results into
significant economy since in the majority of the cases the fluid domain is of a large extent and
the number of equations have to be limited to an extent so that the fluid loading on the shell
surface is adequately defined. The shell response should be more accurately defined hence a
higher order element may be used for discretization of shell domain.

The governing acoustic wave equation for an inviscid compressible fluid with small
displacement assumption is given in terms of dynamic pressure p and acoustic speed ¢ as

1
Vip= 6—21’5 in fluid domain Q, (1)

The pressure gradients at the fluid boundary I'; is defined as:

p,n= —g/ii, at the interaction boundary I', )
p,n= —p/g at the free boundary I'p @)
p,n= —p/c at the radiating boundary I'y )

Here g, il, and g are the fluid density, shell normal acceleration and acceleration due to gravity,
respectively. The boundary condition for the prescribed pressure field is given as:

p=p* on T, &)
Thus the fluid boundary I'; is completely defined by augmenting the above definitions.
rf=l—'1+rR+rF+rp (6)

Equation (1) along with the boundary conditions (2)~(5) may be shown to result into the
following second order ordinary differential equation after semidiscretization:

Here M, C, and K are the fluid global mass, damping and stiffness matrices respectively. Q
is the coupling matrix which transfers shell and ground acceleration vectors ii and ii, respectively
to the fluid domain and f, is the fluid force vector.

The finite element formulatlon of the above matrices can be obtained in a stralghtforward
manner by extending the two-dimensional formulation'®'! as shown by Singh et al.'?. The
pressure in the fluid element is given in terms of nodal pressure p and fluid element shape
function N as:

p=N,p @)
The fluid element mass matrix is constituted by impulsive and free surface sloshing terms as:
(Mj,)ij=1/c2j N}iijdejtl/gj N} N;;dle ©)
Q Te

-



v

3D TRANSIENT ANALYSIS OF SUBMERGED SHELLS 199

Fluid element radiation damping matrix is considered for a non-reflecting or radiating boundary
I'g as:

(Cf)‘fj:l/cj N3N ,;dTg (10)

I'r

Finally, fluid element stiffness matrix is:
(K$)ij= j‘ (N i, Xijax+Nfi,nyj’y+Nfi’ zN;;,2)dQ; (11)
Q
The coupling matrix Q for the fluid domain is given by:

(Qf)ij: j N}instj dry (12)
T
where n, is the unit normal on the shell surface at the shell-fluid interface.

Coupled shell dynamic analysis
The semidiscrete coupled shell dynamics equation is given by:
Msii+csl.l+Ksu:fs'—Msﬁg+Qsp (13)

where M,, C, and K are the shell global mass, damping and stiffness matrices respectively. u
is the displacement field of the shell structure and a superposed dot denotes differentiation with
respect to time, f, is the global load vector and ii, is the specified time history at the base. The
addition of the coupling term Q, in (13) couples this equation with the fluid transient equation
(7). Tt is easily recognized that Q= — Q7. Incode FLUSHEL a nine-noded Lagrangian degenerate
shell element with explicit integration through the thickness has been used. The coupling matrices
Q, and Q, take care of variation in node numbers at the shell-fluid interface. The coupled set
of simultaneous equations (7) and (13) are solved in a staggered manner where the transfer of
interface data from one field to another field is carried out in sequential manner. In order to
economize the storage space, nodal coordinate system is used for the shell dynamics problem.
Thus only single variables are associated with Q, and Q, which are nodal pressures of the fluid
domain and shell normal accelerations of the shell domain respectively. The shell normal
accelerations obtained from the solution of shell dynamics equation (13) and fluid pressures
obtained from (7) can be directly transferred to the respective interacting fields without any
need of further transformation or processing. A separate equation numbering system is evolved
at the shell-fluid interface in the skyline solution procedure by keeping only active degrees of
freedom (one at each node) at the interface. Finally, the coupling terms in the load vectors are
transferred to the original equations of the shell and fluid domains. This scheme requires the
minimum computer storage space for the coupling matrices and is very powerful for
three-dimensional shell-fluid interaction problems particularly on small computers with inherent
limitation on storage space.

Now we define the shell element matrices which are required to obtain the above global
matrices. Figure I shows a three-dimensional brick element with a quadratic displacement field
description. The shell element is formed by degenerating this element with assumptions of
first order shear deformation shell theory. The shell normal stress is neglected and the shell
normal is assumed to remain straight after deformation. The shell geometry can be either
described by the middle surface nodes and thickness at each node point or by shell top and
bottom surface node coordinates. In the present two-dimensional degenerate shell element
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formulation explicit integration through the shell thickness leads to definition of three membrane
stress resultants Nxx, Nyy and Nxy, three moments Mxx, Myy and Mxy along with two
transverse shear resultants-Qx and Qy. These are related to corresponding eight strains on the
shell middle surface €., €,0, Vxy0» Kxs Ky» Kxps Vxzo a0 Py0.

This approach is different than the conventional approach?*2%2° of considering only five
strains at any point in the shell body, where either two point gauss integration is carried through
the thickness or an individual layer numerical integration approach is followed with one gauss
point for each layer. The present approach is economical and more accurate than the conventional
approach?3:2¢. Three sets of coordinate system (Figure 1) are defined namely global (X, Y, Z),
nodal (x,, y,, z,) and local (x,, y,, z,) in this formulation. The global coordinate defines the shell
geometry, the nodal coordinate defines the nodal displacements and global stiffness, mass and
load matrices. The local coordinate is used for numerical integration of element matrices. Nodal
and local coordinates are defines by the shell normal vector ¥, at a node n or any o point in
the element by:

V. =V.XV, (14)

where Vg and 7, . are vectors along ¢ and # natural coordinates of the shell element. So once umt
normal vector along V, (k, at node n and k, at point o within the element) is known, i ori,

B
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for nodal or local coordinates is along T{ and j, is thus finally defined by:
Jna =KXy (15)

The stress and strain resultants are defined in the local coordinate system along with the
description of constitutive laws. The global degrees of freedom at a node i in the nodal coordinate
system is defined as:

éni = [unia Unis Wnngni’ Qyni]T (16)
The local degrees of freedom in local coordinate system at any node point i in the element is
given by:

5ai = [uai’ Ugis Wais Gxai’ ani]T (17)

where u, v, w are displacement components and 0,,0, are the two rotations respectively. The
displacement u® in the shell element is defined by:

node

ue:: E: PJﬁéni (18)

i=1

where N; is the shape function at node i of the shell element. Strain vector g, at a point « in
the element is given in terms of local displacements as:

node
&= ) B, (19)
i=1
and
0, =R, (20)

where R,; is the transformation matrix relating local displacement to nodal displacement and
B, is the strain displacement matrix at any node i. Thus we have:

node
&,= ), BFé, (21)
i=1
where

Bf=BR,, (22)

For the shell element B* matrix can be defined by augmenting contributions from all the nodes
of the element as:

B*=[B%,B%,...,B¥, ...,B¥] (23)

The shell element stiffness matrix is defined as:
(K3);;= f B?:rnTDkalTj[ dA, (24)
As

where D is the elasticity matrix relating mid-surface stress resultants to the strains and ¢ is the
thickness of the shell. The element mass matrix with density g is:

(M);;= [ QsN;ristJ‘ osNj; Nt dA; (25)
As As

Special mass lumping is employed for the translational degrees of freedom as shown by Hinton
et al.*®, while for the rotational degrees of freedom the terms are normalized by m;t?/4. This
normalization is based on a scheme proposed by Surana®® for degenerate C° continuous shell
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elements. Here m; and t; are mass and thickness at node i respectively. The element stiffness
matrix is evaluated by selective integration scheme with 2 x 2 reduced integration for shear and
membrane terms while 3 x 3 full integration is used for bending terms. The structure damping
matrix is constructed by:

C,=aM, + bK (26)

where constants a and b can be chosen suitably to control damping proportionately.

TIME INTEGRATION OF COUPLED FIELD EQUATIONS

The set of coupled equations (7) and (13) are solved by the method of partitioning. Hughe’s
predictor multicorrector integration scheme has been shown to be very powerful for such coupled
problems by Paul'® and Singh et al.'"**. The interaction between the two fields is studied in
a staggered manner by transferring field variables from one field to another field. This time
integration scheme has been derived by combining implicit and explicit integration schemes of
Newark’s method in predictor/multi-corrector form. Here the elements are recognized as either
implicit or explicit. There could be two possible paths for coupled problems. In the first case
the predicted fluid variable is transferred to the structure and the corrected structure response
after the solution of system of structure equations, is transferred to the fluid domain. Alternatively,
the second path could be just opposite to this, where the predicted structure variable is transferred
to the fluid domain at first and then corrected fluid responses could be transferred to the structure
domain. Singh et al.'* have compared the two paths and it has been established that the second
path is suitable for problems of wave propagation in fluid, where a pressure pulse in fluid moves
and transfers load on the structure, while the first path is suitable for problems of structural
motion induced oscillations in fluid such as in the case of storage tanks, reservoirs etc. For the
present submerged shell problems thus, the second path leads to rapid convergence.

For coupled shell fluid dynamic problems the shell domain is normally very stiff compared
to the fluid domain. So the fluid field should normally be discretized with explicit elements while
the shell field should be discretized by implicit elements. This is very advantageous since normally
the fluid field is of quite large size, and explicit description results into economical analysis with
optimum storage space and CPU time in the computer. The present formulation with quadratic
displacement field description for shell domain and linear pressure field description for the fluid
domain is very powerful. Here the nodal spacing in the fluid domain is twice that of the shell
domain, which allows above type of explicit-implicit partitioning for fluid and shell meshes more
conveniently.

The integration scheme reported earlier!®11222% is given below in brief. We consider a set
of second order equations at time step n-+1 as:

Mii, , , +Ca, . +Ku,,, =F,, (27)

Here the subscript in the coefficient matrices has been dropped as it may be used for any
field. The force term augments applied force, specified boundary conditions and interaction term
from other fields. In the predictor phase the field variables are expressed as:

“f,+1=ﬁ,,+1 (28)
ilfz-%—l :ﬁn+ 1 (29)

i, , =0 (30)
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where i is the iteration count and
Eri+1=ﬂrz+At(1_y)ﬁrz (31)
l~]n+1 :un+At|:ln+ 1/2At2(1 ‘-Zﬁ)lin (32)

Here y and 8 are Newmark’s parameters, At is the time step.
In the solution phase the following equation is formed and solved:

K*Au'=f*i | (33)
where
K*=M/BAt>+yC/p At +K (34)
and
fﬂ1=fo+1—Mﬁfz+1_Cﬁfx+1_K“fz+1 (35)

Once the increment in field variable is obtained, field variables are updated as follows:

u;.t-:-ll =uf1+1 +Aui (36)
ii;xill :(utxtll _ﬁn+1)/ﬁ Atz (37)
ﬁ:ztll = il:z +1 -+ ’)’Atﬁ::f-ll (38)

Finally, a convergence check is made on the norm of increment in field variable compared to
the norm of total field variable as:

Is [|Au’[/][u"* || <e (the specified tolerance) ? (39)

i—i+1<NO
and go to (33)
for next iteration

YES

n—n+1
and go to (27) for next time step

Element wise mesh partitioning is done by recognizing elements as explicit or as implicit,

M=M'+ME (40)
C=C'+CE (41)
K=K'+KE (42)
F=F'+F*: (43)

and modifying the governing equation (27) as:
M'd, ., + MPii, 1+Ch, . +K'u, 1 =Fr L +FE, (44)

The stability criteria of Newmark’s integrator for single field with single pass is well
established?*2%:3932 y>1/2 and f=(y+1/2)%/4 lead to unconditional stability.
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Figure 2 Single submerged cylindrical shell in infinite fluid

SINGLE SUBMERGED CYLINDRICAL TUBE PROBLEM

Plane strain analysis with two-dimensional code FLUSOL

Figure 2 shows a long submerged cylindrical tube subjected to a fluid pulse of 100 Ib/in* applied
from the left end while the other boundaries are fixed. This problem has been studied by Paul*®
using displacement potential function formulation for fluid domain with two-dimensional plane
strain assumptions. Two-dimensional transient analysis of this problem with 8-noded
isoparametric continuum elements was conducted by code FLUSOL!! developed by the present
authors, which is based on pressure formulation for the fluid domain and displacement
formulation for the structural domain. Figure 3a shows the horizontal velocity response of the
shell at 0=7/2 and =0 (rear edge) at a time step of 10~ %sec (same as in Reference 10) with
explicit fluid, implicit structure mesh descriptions along with implicit fluid, implicit structure
mesh descriptions. Good agreement is noted with the results reported in the reference. Further
study was conducted by applying radiation boundary condition at Y= —60in and X =601in,
to represent the case of an infinite acoustic medium. Exact analytical and numerical boundary
clement results are available in terms of non-dimensional radial velocity response ¢ Cw/PI and

time parameter ct/a due to Geers®7-38. Here w is the radial velocity and PI is the incident pulse

intensity (1001b/in? in this case), a is the cylinder radius and ¢t is the time.

Eigen value analysis of the mesh in Figure 2 gives the critical time steps of 1.6 x 10~ 7 sec for
the cylindrical shell structure and 2.05x 10~ 5sec for the fluid domain. A time step of
1.75 % 10~ 5 sec was selected for the analysis along with implicit description of the structure mesh.
Figure 3b shows the radial velocity response at the front edge (=) and the rear edge (6=0)
of the cylindrical shell. In this case the results are given for explicit-implicit (E-I) and
implicit—implicit (I-1) partitionings of the fluid and structure meshes respectively. Both consistent
and lumped radiation damping matrices have been used in the former case. Figure 3¢ shows the
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results for a finer mesh and good convergence is noted with respect to the mesh refinement. In
this case the critical time steps for structure and fluid meshes were & x 1078 and 3.9 x 10™ ¢ sec
respectively. Again implicit description of the structure is desirable from the point of view of
minimum CPU time. A time step of 3.25 x 10 ¢sec was used for the analysis in this case. The
same meshes were used to study the case of a submerged sphere in an infinite fluid medium with
axisymmetric continuum elements. The first mesh gave very poor results, while the refined mesh
gave results to an acceptable accuracy level which are shown in Figure 3d. It may be noted that
the rate of increase in scattering area with respect to the wave propagation direction in spherical
shellis larger than the cylindrical shell, hence a more refined mesh is required in the former case.

Three-dimensional response with code FLUSHEL

Figure 4a shows the radial velocity response obtained by three-dimensional analysis with code
FLUSHEL!2. In this case the 9-noded Lagrangian degenerate shell elements have been used
for the tube along with 8-noded trilinear elements to represent the fluid domain. Two elements
have been taken across the cylinder axis for the shell and the fluid meshes. Shell edges are
constrained to obtain a plane strain solution (case PS). Again good agreement is noted with
the reported results®®, for E-I and [-I mesh partitionings of the fluid and shell meshes. As
mentioned earlier the present interest is to obtain the three-dimensional solution of the submerged
cylindrical tube, hence one edge of the cylindrical tube was simply supported without any axial
restraint while symmetry condition was applied at the other end. The eigen value analysis shows
that the dry tube has the fundamental frequency of 68.8 Hz in the first axial (m=1) and third
circumferential (n=3) mode. Two loadings are considered, one with a uniform surface wave of
1001b/in? (case SSSUW) along the full span and the other with a line wave of 1001b/in? (case
SSLIW) at the mid span applied from the left end (Figure 2). The radial velocity response of the
simply supported tube for the case SSSUW is shown in Figure 4b where the results of plane
strain (case PS) are also shown for comparison purpose. It is noted that the velocity response
in this case is significantly higher than the plane strain solution (case PS) due to inclusion of
bending mode and presence of three dimensional fluid field. Figure 4c shows the radial velocity
response for the case SSLIW where the tube is simply supported and is subjected to a line wave.
In this case although the velocity is lower than SSSUW case due to lower value of net load on
the tube, the dynamic behaviour of the tube is different than that given by case PS. Figure 5
compares the pressure responses for cases PS, SSSUW and SSLIW at the front edge (0=m) of
quarter span (L/4). Again it is noticed that the 3-D pressure response is higher for surface wave
loading compared to the plane strain solution. For the line wave loading the pressure is
significantly lower than the plane strain case which is consistent with the velocity response.
Figure 6a shows the axial membrane force (Nxx) at four locations namely at the front edge of
quarter span (§=mn, L/4), at the front edge of mid span (0=m, L/2), at the rear edge of quarter
span (0=0, L/4) and at the rear edge of mid span (0=0, L/2) for SSSUW case along with PS
case for comparison purpose. It is apparent that 3-D solution shows significant increase in
response. Similar trend is noted for circumferential membrane force (Nyy) in Figure 6b. Figure 6¢
shows the axial moment (Mxx) at the above mentioned locations for SSSUW case along with
PS case. It is noted that the 3-D solution shows significant bending response which is not shown
by the PS solution. Similarly the circumferential moment (Myy) obtained by 3-D analysis is
seen to be higher than that obtained by PS solution in Figure 6d.
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Next we consider the case of line wave loading on the simply supported submerged tube (case
SSLIW). Figures 6e and 6/ show the axial membrane force (Nxx) and circumferential membrane
force (Nyy) respectively at the four locations along with PS solution. It is noticed that the
circumferential membrane force (Nyy) is less than that indicated by PS solution due to lower
value of the net load on the tube which is consistent with the radial velocity response. However,
for the present case the axial membrane force (Nxx) is higher than the PS solution. Figures 6g
and 6h compare the axial and circumferential moments (Mxx and Myy) for SSLIW case along
with PS case. Here it is noticed that the circumferential moment (Myy) is lower than PS solution
while the axial moment (Mxx) is shown to be significant which is ignored in the case of
two-dimensional solution (PS). The three-dimensional analysis shows that for a line wave loading
there is significant increase in axial membrane force (Nxx) at rear edge of tube mid span (Figure
6¢) and axial moment (Mxx) at the front edge of the tube (Figure 6g). This is due to increase
in pressure response on the rear edge of mid span which results due to inclusion of bending
mode along with three-dimensional variation in pressure field. This is further examined in detail
for the next problem.

Now we consider the case of a cylindrical tube held at the ends with axial constraint since
this case is of practical interest in the area of heat exchanger design. Two types of boundary
conditions are considered, one of a simply supported tube with full axial constraint and another
of a clamped tube. Again both types of loadings are considered. Thus we have a total of four cases
namely, (i) simply supported tube with axial restraint and loaded with a uniform surface wave
of 100 1b/in? along the full span (case SSASUW), (i) simply supported tube with axial restraint
and loaded with a line wave of 1001b/in? at the tube centre (case SSALIW), (iii) clamped tube
loaded by a uniform surface wave of 100 1b/in? on the full span (case CLSUW), (iv) clamped
tube loaded by a line wave of 100 1b/in? at the tube centre (case CLLIW). In the simple support
condition with axial constraint the tube has the fundamental frequency of 86.4 Hz again in the
first axial (m=1) and third circumferential (n=3) mode. For the clamped tube the fundamental
frequency is 86.8 Hz in the same mode. Figure 7a compares the radial velocity response at the
front and rear edges at the earlier mentioned locations of quarter span and mid span for SSASUW
case with PS case. Again effect of bending is noticed and the response increases compared to
the PS solution. In case of line wave loading case SSALIW, the radial velocity response is lower
than PS solution as shown in Figure 7b. In case of clamped tube (Figures 7¢ and 7d) similar
behaviour is noticed for the two types of waves (cases CLSUW and CLLIW). It is also noticed
that the mid span radial velocity is more than the quarter span velocity and in the clamped
tube case the radial velocities are slightly higher than the simply supported tube cases.

Figures 8a and 8b compare the pressure history at various locations of the tube for SSASUW
case and CLSUW case respectively. It is noticed that the pressure is the maximum at the front
edge of mid span (§=m, L/2) and it is only slightly more for the clamped tube case compared
to the simply supported tube case. The pressure is also significant at the rear edge of mid span
(0=0, L/2) for the clamped tube case compared to the case of simply supported tube. This
justifies the higher response in case of CLSUW compared to SSASUW case. Comparison of the
three cases SSSUW, SSASUW and CLSUW demonstrates that as the tube stiffness increases it
offers more resistance to the wave which results in higher induced pressure and velocity fields
of the tube. Similar behaviour is noticed in the case of line wave loading in Figures 8¢ and 8d.

Figures 9a-9d show the axial membrane force (Nxx) at the four locations for SSASUW,
SSALIW, CLSUW and CLLIW cases along with case PS for comparison purpose. Again it is
noticed that for the surface wave loading the response is higher than the PS case, mid span
membrane force is more than that at the quarter span and the clamped tube gives axial membrane
force slightly higher than the simply supported axially constrained tube case. At the rear edge
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of the mid span even the line wave loading results into higher axial membrane force than that
of case PS. Similar behaviour is noticed for the circumferential membrane force (Nyy) in Figures
10a-10d with the only exception at the quarter span of the rear edge where the clamped tube
response is lower than the simply supported tube response. Figures 1la—11d show the axial
moment (Mxx) for the above-mentioned cases. Again it is noticed that there is significant axial
bending moment which is normally not associated with the simple two-dimensional solution.
In this case the quarter span moment is more than the corresponding mid span value indicating
that higher modes are also excited significantly. Circumferential moment (Myy) is shown in
Figures 12a-12d. In this case also the surface wave loading results into higher moment compared
to PS solution while the line wave loading gives a lower circumferential moment compared to
PS solution and the maximum response is at the quarter span of the front edge.

In the three-dimensional analysis of single submerged cylindrical tube presented in this paper,
the critical time steps for fluid and shell meshes are 3 x 1075 and 5.9 x 10”7 sec respectively.
This suggests that a practical analysis is possible with implicit description of the shell mesh,
while the fluid mesh could be integrated with an explicit integrator. Experience shows that the
time step should be slightly lower (~20 to 25%) than the critical time step of fluid mesh**-!2
for such partitioning. The reason for this is that the interaction term appears as a perturbation
which may be considered analogous to a pseudo non-linear term of non-linear dynamics problem*.
Initial trials with time steps of 2.75x 1073 and 2.5 x 10™° sec resulted in a very large number
of iterations per time step. One possible reason for this is that the tube has the fundamental
frequency of 68.8 Hz in SSSUW case with m=1 and n=3 mode; however, response of the tube
indicates that combination of modes m=1 and m=2 along with n=1 is the predominant which
corresponds to frequencies of 183 Hz and 733 Hz respectively. Thus a practical time step of
2 x 1073 sec was selected to include significant modes of tube vibration in the analysis. The
selection of time step is thus dependent on the critical time steps for the fluid and structure
meshes along with the modes of excitation for such coupled three-dimensional transient problems.

CONCLUSIONS

In the present paper a practical methodology to analyse coupled three-dimensional fluid—structure
interaction problems has been presented. The two-dimensional degenerate shell element with
explicit through thickness integration can be effectively coupled with a three-dimensional trilinear
fluid element for transient analysis. Effective explicit-implicit partitioning is achieved for shell
and fluid meshes in an optimum manner by using a staggered solution scheme. The
three-dimensional transient analysis of a single submerged tube presented in this paper
demonstrates the importance of the bending mode along with the three-dimensional variation
in fluid field for surface wave and line wave loadings. This is an important aspect of submerged
tube design which requires attention by designers. Simplified two-dimensional plane strain
solution does not necessarily give out conservative results, thus a three-dimensional transient
analysis is necessary for such submerged structures and components.
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