
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 29, 1487-1499 (1990) 

ON THE USE OF ONE POINT AND TWO POINTS 
SINGULARITY ELEMENTS IN THE ANALYSIS OF KINKED 

CRACKS 

B. K. DUTTA 

R. E. I)., Bhabha Atomic Research Centre, Bombay-85, India 

Department ofMechanica1 Engineering, Indian Institute of Technology, Bombay-76, India 

A. KAKODKAR 

R. E. D., Bhabha Atomic Research Centre, Bombay-85, India 

SUMMARY 

A'3-noded triangular two singular points finite element is proposed to model two variable order singularities 
lying at close proximities as in the case of a kinked crack. The element meets the rigid body mode and the 
interelement compatibility of the convergence criteria. A degenerate form of the element is a one point 
variable order singularity element, which meets all the convergence requirements. A number of kinked crack 
problems have been analysed using the new element and its degenerate form. The computed results are 
compared with analytical solutions. The accuracy of the results is found to be good. 

INTRODUCTION 

Analysis of kinked cracks is complicated by the existence of two singular points separated by 
a small distance, In most of the cases one of the singularities, which occurs at the knee, is of 
a variable order and the other, at the crack tip, is a square-root singularity. We can analyse such 
a problem by using quarter point elements at the crack tip and the one point variable order 
singular elements suggested by Tracey and Cook' at the knee. We have demonstrated recently2 
that the use of two points singularity elements instead is very advantageous. It leads to both 
computational gains and accuracy. We have presented a 4-noded element for this purpose. This 
element does not meet any of the three convergence requirements-the rigid body mode, the 
constant strain condition and the interelement compatibility. 

We present here a 3-noded triangular element which meets both the rigid body mode and the 
compatibility conditions, when it is used as a two points singularity element. We also show that 
the element can be used as a one point variable order singularity element like the Tracey and 
Cook element.' This element then meets all the three convergence requirements and hence it does 
not suffer from the limitation of the Tracey and Cook element.' 

0029-598 1/90/07 1487-13$06.50 
1990 by John Wiley & Sons, Ltd. 

Received 27 February 1989 
Revised I November 1989 



B. K. DUTTA, S. K. MAITI AND A. KAKODKAR 

No. o f  nodes E 174 

No. of  nodes = 174 
(b) (dl 

Figure 3. (a) Single edge kinked crack in a long tension strip. (b) Discretization details away from the knee and crack tip- 
(c) and (d) Two discretization schemes around the knee and crack tip 
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cases. A 9-point integration scheme has been used for the quadrilaterals and a 7-point scheme is 
employed for the triangular elements. 

The first example deals with a kinked crack in a long elastic tension strip. This problem was 
studied by  trace^ and Cook1 as well as by us in Reference 2. The dimensional details are shown 
in Figure In the Present study two discretization schemes around the knee and crack tip 
(Figures 3(c) and 3(d)) Were used. Through the first scheme the performances of one point 
singularity elm~ents of the Tracey and Cook1 type and degenerate TSPT elements have been 
examined separately. In the second scheme one TSPT element surrounded by a number of 
degenerate TSPT elements has been used. The following equations were used to calculate stress 
intensity factors by comparing the net opening and sliding displacements, as suggested in 
Reference 5. 

where 8, and 6, are the net opening and sliding displcernents at the knee respectively, r is the kink 
length and E is the modulus of elasticity. These results are shown in Table I. This table also 
includes the result quoted in Reference 1, wherein apparently a very large number of elements 
have been employed near the crack tip. 

The second example is the analysis of a double edge kinked crack in a long tension strip, as 
shown in Figure 4(a). The kink angle was varied from 15" to 90' in steps of 15". Figure 4(b) shows 
the discretization details away from the kink. The arrangement of elements around the crack tip 
and the knee for the case of 45" is shown in Figure 4(c). The co-ordinates of the nodes around the 
crack tip and the knee were suitably modified to obtain discretization for the cases 8 = 90°, 75", 
60", 30" and 15". The stress intensity factors were computed as before by comparing the 
displacements of the nodes at the knee using equation (10). The J-integral was computed using 
three different contours around the crack tip lying within C ,  and C ,  (Figure 4(c)). Table II 
shows a comparison of computed J-integrals with the results obtained using the approach of 
Reference 6. This table also shows the order of singularities at the knee for different kink angles, 
which were calculated using Reference 3. The variation of stress intensity factor (§IF) with the 
kink angle is shown in Figure 5, where results based on the first order analytical solution6 are also 
included. 

The third example is the analysis of a single edge crack under 4-point bending. The study is 
again done for 0 in the range 15" to 90" in steps of 15". The mesh arrangement is similar to the 
discretization schemes shown in Figure 4. The stress intensity factors are again calculated by 

Table I. Computed values of mode-I SIF for single edge kinked crack in a long tension strip 

Computed stress intensity factor using 

One singular point elements 
(Figure 3(c)) 

Computed by Proposed by Proposed in 
Tracey & Tracey & Cook the present Two singular points element 
Cook (Ref. 1) {Ref. 1) work (Figure 3(d)) 

2.317 2-175 2-20 1 2-327 
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Figure 4. (a) Double edge kinked cracks in a tension strip. (b) and (c) Discretization details for 0 = 45" 
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Table II. Comparison of computed and analytical J's for double edge kinked crack 

J compound 

X at J based on three Percentage 
0 knee J analytical contours Average J difference 

comparing the displacements of the nodes at the knee. They are compared with the analytical 
solution6 in Figure 6. 

The last example deals with an asymmetrically branched crack in an infinite plate subjected to 
a unidirectional tension load, as shown in Figure 7. Only the branch angles 15" and 45" were 
examined here. For the proportion shown in Figure 7 the plate can very well be treated as an 
infinite body. The discretization scheme employed is shown in Figure 7. In the analysis the kink 
dimension was held constant but the main crack was varied using a scheme similar to that 
mentioned in Reference 2. The J-integral was computed along three different contours. The 
results are shown in Table III. A comparison of J is shown with the analytical results of 
References 7 and 8 in Figures 8 and 9 for branch angles 15" and 45" respectively. Stress intensity 
factors quoted in References 7 and 8 were converted in terms of J for this comparison. 

DISCUSSION AND CONCLUSION 

The 4-noded element of Reference 2 indicated in a sense the feasibility of having two singular 
points in a single element. The element failed to satisfy any of the convergence criteria. The 
present element has helped us fo move a greater step forward. The element satisfies the two 
important convergence criteria-the rigid body mode and the interelement compatibility. The 
 on-satisfaction of the third criterion, the constant strain condition, renders the element, at the 
most, unsuitable for the analysis of thermal problems. The element has been used to solve 
different shape and sizes of kinked cracks to show its accuracy. 
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Figure 5. (a) Double edge kinked cracks in a tension strip. (b) Comparison of computed SIFs with an analytical solution 
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Table III. Computed J's for asymmetric branched crack in an infinite plate 

Computed J for kink angle 15" Computed J for kink angle 45" 
- ,- 

J based on 3 Average J based on 3 Average 

c c/l  contours J contours J J E  J E  - 
a2 KC CJ27cc 

0.0074285 0.0052993 
0.5 12.50 0.0078739 0*007705 1.030 0-00538 10 0.005365 0.7172 

0.0078 136 0.0054 1 5 1 

In the first example, a kinked crack in a long tension strip, the accuracies obtained by the 
Tracey and Cook1 element and the degenerate TSPT elements are close. This example also shows 
that a better accuracy is obtainable if one TSPT is employed instead of two one singular point 
elements. 

In the second example, a double edge kinked crack in a long tension strip, the SIFs agree 
closely with the analytical solution6 for kink angles less than 60". The difference is more for higher 
kink angles. For the 90" case, we observe that K, is less than the analytical value and KII is more 
than the analytical result. A similar agreement is also found for the J-integral. We have similar 
observations for example 3, but in this case the agreement between analytical and computed SIFs 
is better. In the last example, the asymmetrically branched crack in an infinite plate, the average 
J-integral is found to be nearer (within &- 5 per cent) to the values quoted in Reference 7 than 
those of Reference 8, 

These case studies show that the one point singular element, i.e. degenerate TSPT element, 
given by equation (9) is as accurate as the Tracey and Cook1 element. The present element is 
preferable to the Tracey and Cook element because it meets all the convergence requirements. 
Similarly, the two singular points triangular (TSPT) element represented by equation (6) can be 
recommended over the 4-noded two singular points quadrilateral (TSPQ) element given in 
Reference 2 because of its ability to meet some of the convergence criteria. Table IV shows 
a comparative study of the abilities to satisfy various convergence criteria by the elements 
considered in this paper. 
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Figure 8. Comparison of analytical and computed J for the case of 15" asymmetrically branched crack in an infinite plate 

Table IV. A comparative study of the abilities to satisfy convergence criteria by different elements 
considered 

One singular point Two singular points 
element element 

Convergence criteria 

Rigid body mode 

Constant strain 
criteria 

Interelement 
compatibility 

Tracey & Cook 
element 
(Ref. 1) 

Satisfies 

Does not 
satisfy 

Satisfies 

Degenerate 
TSPT 

element 

Satisfies 

Satisfies 

Satisfies 

TSPQ 
element 
(Ref. 2) 

Does not 
satisfy 

Does not 
satisfy 

Does not 
satisfy 

TSPT 
element 

Satisfies 

Does not , 
satisfy 

Satisfies 
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Figure 9. Comparison of analytical and computed J for the case of 45" asymmetrically branched crack in an infinite plate. 
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