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ABSTRACT

This paper demonstrates the capability of staggered
solution procedure for coupled fluid—structure
interaction problems. Three possible computational
paths for coupled problems are described. These are
critically examined for a variety of coupled problems
with different types of mesh partitioning schemes.
The results are compared with the reported results
by continuum mechanics priority approach—a
method which has been very popular until recently.
Optimum computational paths and mesh partition-
ings for two field problems are indicated. Staggered
solution procedure is shown to be quite effective
when optimum path and partitionings are selected.

INTRODUCTION

Fluid—structure interaction has become an import-
ant research and development activity in recent
years for nuclear, space and offshore industries. The
topic merits special consideration in the area of
nuclear reactor safety in a number of situations. The
important applications are design and analysis of
liquid containers against earthquakes, design of
vapour suppression pool for loss of coolant accident
and studies of submerged components for postulated
accident condition giving rise to pressure transients
in fluid. There are two approaches available to
analyse a fluid—structure interaction problem. In the
first approach an existing structure dynamics code
is modified to make the shear modulus zero in the
fluid domain. The fluid-structure interface is
constrainted to have normal displacement con-
tinuity>7-#1929 An optimum penalty parameter or
irrotational flow condition is enforced to avoid any
spurious circulation mode or zero energy mode. In
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this formulation either contact elements are used at
fluid—structure interface or a penalty parameter is
selected for suppressing these spurious modes.
Au-Yang' defines this method as structure mechanics
priority or continuum mechanics approach.

The second approach is based on coupled
solution of acoustic wave equation and structure
dynamics equation by method of partitioning* *'®
using staggered solution scheme. The advantages of
this approach are that it is modular in nature,
various types of mesh and field partitionings are
possible and a variety of linear or non-linear coupled
fluid—structure interaction problems can be solved.
In the case of an acoustic medium interacting with
structure, this approach results in considerable
saving in terms of number of degree of freedom for
the fluid domain. For example, in the pressure
formulation only one variable is assigned at each
node for two- or three-dimensional problems. The
limitations of this method are as follows. The
resulting equations are unsymmetric. So iterative
schemes are required for solution of equations of
two fields. The fluid and structure responses have
to be corrected due to interaction term, until the
convergence is met. The coupling at fluid—structure
interface causes a large bandwidth. However, this
limitation can be overcome by using skyline storage
scheme and independent equation numbering
system at the interface'®.

Belytschko'? has classified transient problems in
two categories, wave propagation problems and
inertial problems. In wave propagation problem,
accuracy of wave front resolution is important, so
high vibration modes also have to be integrated
properly. In case of inertial problems, the response
lies in few lower modes, so higher modes are not
important and they must be filtered out. In the case
of fluid—structure interaction problem one is faced
with both types of situations. Normally in fluid
domain the pressure wave has to be traced with
accuracy if it is likely to excite significant structure
modes strongly. Another important consideration
for fluid—structure interaction problems is selection
of optimum integrator. Two methods are available:
explicit method and implicit method. It is well
known that an explicit scheme is conditionally
stable, thus limiting the time step size. But this
method requires less CPU time and small storage
since it does not call for solution of system of
simultaneous equations. On the other hand, implicit
scheme requires solution of system of equations at
each time step. This method is unconditionally
stable and larger time steps are permitted depending
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on the order of accuracy required. Errors in
numerical solution process are introduced by spatial
discretization and temporal discretization in the
transient problems. Normally higher modes are in
error, but by selection of a proper integrator, time
step and artificial damping, optimum results can be
obtained! 2192323

The present paper brings out some features of
partitioning method for coupled fluid-structure
interaction problem. A brief theory is given first.
Paul® has indicated three computational paths for
staggered solution scheme. The details of this are
then described. These three paths are critically
examined for a variety of coupled problems. It is
concluded that selection of optimum path and mesh
partitioning 1s important for efficient solution of
coupled problems. Two paths are found to be
optimum, the selection of which is governed by type
of coupled problem. Numerical studies indicate that
the convergence rate of partitioned analysis depends
on time step and mesh integrator for fluid and
structure along with the path. The paper ends with
some conclusions as demonstrated by comparison
of the results of present partitioning method with
that of continuum mechanics approach?.

THEORY

The methodology adopted in the present work to
analyse a fluid—structure interaction problem is
based on the solution of acoustic wave equation by
finite elements for fluid domain and analysis of
structure based on the displacement method of finite
elements. The resulting coupled second-order
ordinary differential equations for fluid domain and
structure domain are numerically integrated by
Newmark’s method. The structure normal accelera-
tions are transferred to the fluid domain and fluid
pressures are applied to the structure at each time
step in an iterative manner. Thus it is possible to
solve a purely structure dynamics problem, a purely
fluid dynamics problem with homogeneous boundary
and a coupled fluid—structure interaction problem
by this formulation. Use of Newmark’s direct
integration method in predictor-multi-corrector
form?-'*13 for the two field equations in an implicit
or explicit manner along with sky line storage
scheme makes this approach very effective.

Pressure formulation for fluid

The governing acoustic wave equation in terms
of pressure variable for inviscid, compressible fluid
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with small displacement is:

1 . ‘ .
Vzngz p  (in fluid domain Q) (1)
where p is pressure and ¢ is acoustic speed.

The three types of pressure gradients at fluid
boundary with outward normal n are:

(i) Interaction boundary
I; with p, n= —p,ii, (2)
(ii) Free boundary
Iy with p, n= —p/y (3)
(1) Radiating boundary
Iz with p, n=—p/c (4)

Another type of boundary is for prescribed pressure

P

p=p> onlp (3)

The above boundaries define the fluid boundary
I'; completely:

[=T4 Tt Tt s (6)

Here p,, ii, and g are fluid density, structure normal
acceleration at fluid—structure interface and acceler-
ation due to gravity respectively. The above
equation (1) along with boundary conditions (2)-(6)
result in the following equation after semi-
discretization:

Mfti+Cfp—"Kfp:p‘,"Qf(ii—}_ﬁgJ-'_ff (7)

where M, C, and K, are fluid mass, damping and
stiffness matrices respectively. Q, couples the fluid
equations to structure and ground acceleration
vectors ii and ii, respectively and f, is fluid force
vector.

Structural dynamics problem

The semi-discrete structural dynamics equation
for a structure coupled with an acoustic medium of
above description is:

Msii—f—Csl:l'f"Ks“:fs*M.vﬁngQsp (8)

where M, C, and K, are structure mass, damping
and stiffness matrices respectively. u,u,ii are
structure displacement, velocity and acceleration
respectively. Q, couples the structure equations to
fluid pressure. It is easily recognized that the
coupling matrix Q,= —Q;. Appendix I shows
forms of various matrices for two domains for two-
dimensional problems.



Coupled equation solution strategy

The system of (7) and (8) are coupled
second-order ordinary differential equations. Vari-
ous solution schemes for coupled problems have
been suggested by Park and Felippa?, Paul® and
Felippa and Geers*. The difficulties with field
elimination methods are that order of resulting
differential equation is higher, sparseness of matrices
are lost and special algorithms are required due to
new initial conditions. The method of simultaneous
solutions also poses some computational difficulties.
The resulting equations are unsymmetric (as seen
by (7) and (8)). Attempts to make them symmetric
leads to loss in bandedness of the resulting
equations®. The method of partitioning overcomes
the above mentioned limitations. Here the structure
or the fluid field may be integrated by implicit,
explicit or mixed time integration scheme on two
different meshes in a staggered fashion and
interaction effect can also be accounted.

Since in most of the problems the critical time
step for the two fields may be of varying magnitude,
it is desirable to use implicit (I), explicit (E) or mixed
explicit-implicit (E-I) time integration scheme
either for one field or for both the fields. In the
present case the predictor—multi-corrector algorithm
due to Hughes'* is used. This is based on
elementwise splitting of mesh in implicit and explicit
form which is described in Appendix I1. It has been
used by Paul® for coupled fluid—structure interaction
problems, where three possible computational paths
are described. In path 1 the field variables for both
the fields are predicted and the predicted variables
at the interaction boundary are transferred to the
respective fields. Both fields are solved with
predicted interaction variable simultaneously. In
path 2 the sequence is structure then fluid, i.e.
predicted pressure is applied to the structure and
the corrected structure response after solution of the
structure equations is transferred to the fluid to take
into account the interaction effect. Path 3 is just
opposite to path 2 where the sequence is first fluid
then structure.

The stability analysis of single field Newmark
integrator is well established!*'*1®. Hughes'* has
also established the stability criteria in single fields
with explicit—implicit partitioning. It has been
proved that mesh partitioning for single field
problem is quite effective. Stiff elements could be
treated implicitly while flexible elements could be
treated explicitly without affecting stability. Time
step for such partitioning depends on minimum
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period of explicit mesh alone. Coupled problems
with various mesh partitioning schemes along with
the predictor-multi-corrector algorithm are not
easily amenable to stability analysis. Some general
notions are available in References 2—4, where it is
concluded that stability depends on integrator,
mesh partition, predictor formula and computa-
tional path. The major difficulty with this is that
modal equations are not available in explicit form
and the order of characteristic polynomial for such
an analysis is large. However, it is realized that
based on information available, stable algorithms
can be selected and optimum mesh partitioning is
possible. It is also obvious that out of the three
paths described above best path will be either 2 or
3 depending on type of problem; this is discussed
in the next section. Path [ obviously is not
recommended as it gives slower convergence and
becomes unstable or sometimes gives convergence
problems. Satisfactory convergence is the major
goal which 1s achieved by effective mesh partitioning
and selection of optimum computational path.

CASE STUDIES

To study the performance of present formulation
and to examine the effects of wvarious mesh
partitioning and computational paths, a number of
problems were analysed with code FLUSOL'®
developed by the authors. This can be used to solve
two-dimensional plane stress—plane strain and
axisymmetric problems of fluid-structure inter-
action. The present results were obtained by
staggered solution schemes for coupled equation of
two fields. The problems have been selected from
Akkas®. The results reported therein are based on
continuum mechanics approach. All the problems
were solved by Newmark’s explicit or implicit
integration scheme in predictor—multi-corrector
form with parameters f=0.25 and y=0.5. A
tolerance of 1.0E-05 was used as convergence
criteria on the ratio of norm of incremental field
variable (pressure or displacement) with norm of
total field variable (eqn I11.14 of Appendix II). The
results reported here were obtained on a Norsk Data
machine (ND 560 and ND 570) in double precision.

Pressure wave propagation in a rigid pipe

Figure la shows a rigid pipe with a pressure pulse
of 11b/in? applied at one end and the other end is
closed. Twenty plane-strain four-noded isopara-
metric fluid elements were used to discretize the fluid
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Figure Ta Pressure wave propagation in a pipe
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Figure Th  Pressure history in element 1. 0, Exact; 1, Ref. 5; 2, impl.
cons.; 3, explicit; 4, impl. lump; At=0.01 msec
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Figure Te  Pressure history in element 5. 0, Exact; 1, Ref. 5; 2, impl.
cons.; 3, explicit; 4, impl. lump; At=0.01 msec

domain. Solution was obtained for single fluid field
with homogeneous boundary condition. A time step
of 0.01 msec (same as that reported in Reference 5)
was used to trace the pressure wave propagation.
Results are compared at centre of element 1, 5, 15
and 20 in Figure 1b—le, by interpolating the pressure
history from nodal valves. Three cases namely
implicit integration with consistent mass, explicit

104 Eng. Comput., 1990, Vol. 7, June

integration with lumped mass and implicit integra-
tion with lumped mass are presented. It ia noted
that implicit scheme with consistent mass shows
dispersion before the arrival of shock front, while
the explicit scheme and implicit scheme with lumped
mass show dispersion after the arrival of shock front.
This dispersion or oscillatory behaviour at shock
front is due to discontinuity, spatial and temporal
discretization errors discussed by Schreyer!'3. The
present results are better than those in Reference 5
which is based on continuum mechanics approach
where pressure is obtained from gradient of nodal
displacements.

It has been mathematically established by
Hughes'* that matched methods of time integration,
i.e. implicit schemes with consistent mass and
explicit scheme with lumped mass represent shock
wave accurately. The theoretical argument is that
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Figure 1d  Pressure history in element 15. 0, Exact; 1, Ref. 5; 2, impl.
cons.; 3, explicit; 4, impl. lump; At=0.01 msec
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Figure Te  Pressure history in element 20. 0, Exact; 1, Ref. 5; 2, impl.
cons.; 3, explicit; 4, impl. lump; At=0.01 msec
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Figure 1f Pressure history in element 1. 0, Exact; 1, Ref. 5; 2, impl.
cons.; 3, explicit; 4, impl. lump; At=0.0275 msec
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Figure Tg Pressure history in element 5. 0, Exact; 1, Ref. 5; 2, impl.
cons.; 3, explicit; 4, impl. lump; At=0.0275 msec

the spatial and temporal discretization errors tend
to cancel each other. The critical time step for this
problem is evaluated to be 0.028 msec which is of
the order of h/c, where h is the mesh size (1in) and
¢ is the acoustic speed. Another set of results is
presented in Figures If-1i where a time step of
0.0275 msec (very close to the critical time step) has
been used. As expected the accuracy of the explicit
method is very good and results show no dispersion.
Implicit method with consistent mass shows some
oscillations which are either less than or comparable
to that reported by Akkas®. Implicit method with
lumped mass shows oscillations which are either
more or comparable with that reported”. Thus the
present formulation is capable of predicting shock
front accurately. The behaviour of implicit and
explicit integrator is consistent with the theoretical
arguments given by Hughes'® for shock wave
problems.

5
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Plate—fluid interaction problem

Figure 2a shows a fluid reservoir which is closed
at one end with a steel plate with fixed ends. A 5 x5
mesh of eight-noded isoparametric elements was
used for fluid domain. The plate was modelled
with 1 x5 eight-noded isoparametric plane strain
clements. A pressure pulse of 100 kg/cm? was
applied at one end and pressure history was traced
at point A (X=1425cm, Y=75cm) in fluid
domain. At first implicit integration with a time step
of 0.01 msec was used for fluid and plate. Figure 2b
shows the results for rigid and flexible plate. Rigid
plate solutions are obtained by solving fluid as a
single field with homogeneous boundary and also
by the coupled solution method with a high
Young’s modulus of plate (1 x 10*? kg/cm?). Both
approaches give identical results. Again dispersion
is noted before the arrival of shock front. For flexible
plate case the pressure history is shown to be less
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Figure Th  Pressure history in element 15. 0, Exact; 1, Ref. 5; 2, impl.
cons.; 3, explicit; 4, impl. lump; At=0.0275 msec
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Figure 2b  Plate-fluid interaction (8 node). 0, Rigid exact; 1, rigid®;
2, flexi.®; 3, rigid plate; 4, flexi plate; At=0.01 msec (implicit cons.)

than that reported®. Similar observation is made
with nine-noded element results in Figure 2¢. It is
noted that single bilinear element across the
thickness of plate has been used® which is very stiff
in bending. The problem was then analysed with
10 x 10 mesh for fluid and 2 x 10 mesh for plate with
bilinear elements. Figure 2d shows the results. Here
it is noted that the pressure response is very close
to that reported by Akkas’. The tendency of
pressure curve is to approach the rigid plate
solution. Reduced quadrature (1 x 1) integration for
bilinear elements in plate improves the results and
pressure response is very close to eight-noded
elements result for flexible plate case.

In the present problem with eight-noded elements
the smallest time periods for fluid and plate models
were evaluated as 0.10914 msec and 6.98 x 10~ % msec
respectively. This suggests that fluid field could be
solved by explicit method while the plate should be

106 Eng. Comput., 1990, Vol. 7, June

solved by implicit method. Table I shows the
smallest time periods for fluid domain for the three
models.

The above three problems were solved by treating
fluid with explicit integrator while the plate was
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75 i) 15
\Y TIME(m SEC)

Figure 2¢  Plate-fluid interaction (9 node). O, Rigid exact; 1, rigid®;
2, flexi.5; 3, rigid plate; 4, flexi plate; At=0.01 msec (implicit cons.)
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Figure 2d  Plate-fluid interaction (4 node). 0, Rigid exact; 1, rigid®;
2, flexi.%; 3, rigid plate; 4, 2 x 2 int. flexi; 5, 1 x 1 int. flexi; 6, 8 node
flexi; At=0.01 msec (implicit cons.)
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Figure 2e  Plate-fluid interaction (9 node). 0, Rigid exact; 1, rigid®;
2, flexi.%; 3, rigid plate; 4, flexi plate; At=0.05 msec (explicit fluid
implicit plate)
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Figure 2f Plate-fluid interaction (4 node) 0, Exact; 1, explicit (At«);

2, impl. cons. (Ate); 3, impl. lump. (Ate); 4, explicit (Ate/2);
5, implicit (2Ater); 6, implicit (4Ate); Ater=0.07 msec (uniform mesh)

Table 1 Critical time steps for plate—fluid interaction problem

Smallest period Eight-noded Nine-noded Four-noded
T.. (msec) element element element
Consistent mass 0.10914 0.0943 0.10563
Lumped mass 0.11376 01722 0.22269
At,=T,./m (msec) — 0.036 0.054 0.07

treated by implicit integrator (E-I partitioning). It
was realized that in the coupled wave propagation
problem E-I partitioning for fluid and structure
respectively takes a large number of iterations for
convergence compared to I-I partitioning. This is
particularly true at initial steps as shown in Table
2 for this problem.

From Table I it is noted that the critical time
steps for Lagrangian elements are close to the
theoretical estimates of h/c and h/\/f6c for four- and
nine-noded elements respectively. The critical time
step for eight-noded element is the minimum. So
E—I partitioning is more effective with Lagrangian
elements and bilinear element is the most suitable
one. This has been discussed previously!®'?!% also.
Figure 2¢ shows the typical results for E-I
partitioning with nine-noded elements. The rigid
plate solution shows some dispersion after the
arrival of shock front even with the explicit
integration scheme at a time step very close to the
critical time step. This is again attributed to
discretization error. Here the critical time step is
governed by nodal spacing in the Y direction, while
the wave is being traced in the X direction. Figure
2f shows results for rigid plate case with four-noded
elements in a uniform square mesh (15 x10). It is
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noted that explicit calculation at critical time steps
(0.07 msec) shows no dispersion. Implicit calculation
at critical time step shows dispersion and it is more
in the case of lumped mass than with consistent
mass. Results of implicit calculation at twice and
four times the critical time steps show large
oscillations due to error in higher modes. Explicit
results at half the critical time step are also shown,
which also shows oscillation due to dispersion.

In the present problem plate vibration is followed
by the pressure pulse propagation in fluid, so path 3
is the optimum. The number of iterations per time
step is the least for path 3 and maximum for path 1.
Path 2 is slightly slower than path 3 in terms of
convergence rate. Another important observation
about the rate of convergence is for /-] partitioning.
In this case larger time steps can be used. The
number of iterations increases with the time step till
1.0 msec. This is the time required for the pressure
wave to reach the plate. Further increase in time
step results in reduction in number of iterations
again. This is shown in Table 3 for eight-noded
element mesh. At a time step of the order of the
time required for the pressure pulse to reach the
plate, the numerical behaviour of the fluid model
shows a transition from compressible to incompres-
sible fluid case. This results in oscillating response
of fluid. Again at still larger time steps the fluid
model behaves as purely incompressible and
convergence is very rapid. This behaviour is
consistent with effect of compressibility for coupled
problemsl’z“’"o‘“’.

Base excitation of water reservoir

The third problem is of a water reservoir of
300 ft x 300 ft size which is excited at the base with
a constant acceleration of 1 g (Figure 3a). Here fluid
boundary is treated to be surrounded by rigid walls.
This problem has been studied by Akkas® and

Table 2 Number of iterations for plate—fluid interation problem in
computational path 3

Eight-noded Nine-noded Four-noded
element element element
mesh mesh mesh

£~ E=f /-1 E~/ - E- -/

At (msec) 0.030 0.025 0.025 0.05 005 0.06 0.06

Average
iterations in
initial steps — 30-50 15-30 5-6

Average
iterations in
latter steps — 15-20

20-45 5-6 15-27 5-6

710 45 811 45 5-7 4-5

Eng. Comput., 1990, Vol. 7, June 107



Fluid=structure interaction problems: R. K. Singh et al.

Table 3 Number of iterations in computational path 3 for plate—fluid interaction problem with /~/ partitioning

Compressible Transition Incompressible
Time step (msec) — 0.1 0.2 0.35 0.5 1.0 2.0 10.0 100.0 1000.0
Number of iterations 9 11 19 27 46 20 5 3 2
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Figure 3a Reservoir with base motion. C=4720 ft/sec: Figure 3¢ Reservoir under base motion (8 node). 0, Exact; 1, D/5;

g=132.2 ft/sec?; p'=1.94 Ibs?/ft*
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Figure 3b  Reservoir under base motion (4 node). 0, Exact?; 1, D/5;
2, MS®; 3, 4 node; At=2.5msec (implicit cons.)

Chopra''. Figure 3b and 3¢ show the impulsive
pressure response (at X =y=30 ft) for four-noded
and eight-noded element 6 x 5 mesh integrated by
implicit method with a time step of 2.5 msec. The
results are compared with exact results!! and
numerical results® where results of direct integration
(DI) and mode superposition (MS) are given by
continuum mechanics approach. Figure 3b shows
that present results trace the impulsive pressure
response more accurately than that given in
Reference 5. The phase shift and amplitude changes
are the minimum for the present case. The results
of eight-noded mesh in Figure 3¢ almost overlap the
exact result within the accuracy of curve plotting.
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2, MS®; 3, 8 node; At=2.5 msec (implicit cons.)
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Figure 3d Reservoir under base motion. 0, Exact; 1, 4 node
(implicit); 2, 8 node (implicit); 3, 4 node (explicit); 4, 8 node
(explicit); At=2.5msec (implicit cons.)

Figure 3d compares four-node element and
eight-node element results for implicit and explicit
integration at a time step of 2.5 msec. It is noted
that eight-node results (implicit and explicit cases)
represent the pressure history very accurately, where
calculation has been done at a time step close to
the critical time step.

Exterior shell-fluid interaction problem

A spherical shell submerged in an infinite fluid
medium and subjected to a step pressure is a
classical problem of shell-fluid interaction. Figure
4a shows the details of this problem. Here the fluid
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mesh is taken up to a length of 29.5in from the
shell outer surface. A radiation boundary condition
is specified at this end. In this problem the minimum
time period for shell is an order of magnitude less
than that of fluid. So one is again tempted to use
E-I partitioning for fluid and shell meshes
respectively. The critical time step for fluid is
evaluated to be 0.033 msec, which is of the order of
hjc (h=191in). For this problem also the number
of iterations per time step is very large for E-I
partitioning compared to I-I partitioning, as noted
in the earlier problem of plate—fluid interaction. For
example, the number of iterations were 20-25 for
E~I partitioning compared to 5 to 6 iterations for
I-I partitioning for a time step of 0.025 msec.
Pressure wave propagation in fluid and radial shell
deflection are shown in Figures 4b and 4¢ for E-I
partitioning and Figures 4d and 4e for I-I
partitioning respectively. For explicit solution of
fluid mesh the radiation damping matrix C; is
lumped in the same manner as mass matrix M. It
is observed that if the time step is very close to the

-8 L= 0.5 IN ( EXACT)
/_1
L =95 IN(EXACT)
.6@
L =19.5 IN { EXACT}
.48
- L =29.5IN [ EXACT)
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] .28
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w
w
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a . B8 IMPLICIT SHELL
.28 i o : =
2 4 8 iz 1.8 2.2
TIME(m SEC)
Figure 4d Pressure wave propagation from submerged sphere.
At=0.025 msec
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Figure 4e  Radial deflection of submerged sphere. At=0.025 msec.

0, Exact; 1, present
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critical time step of fluid mesh, the convergence rate
is slow and solution does not converge even after
100 iterations for a time step of 0.03 msec in E-I
partitioning. Figures 4f and 4g shows the results for
a fully explicit calculation (E—E) for fluid and shell
meshes respectively at a time step of 0.002 msec
which is the critical time period for shell mesh.

In this problem the fluid oscillation is followed
by shell vibration, so path 2 is the optimum. Path 3
is slightly slower than path 2 while path 1 is quite
inefficient. For an I-/ partitioning the convergence
rate reduces with increase in time step up to
0.6 msec. Further increase in time step results in
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Figure 4f Pressure wave propagation from submerged sphere.
At=0.002 msec
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Figure 4g Radial deflection of submerged sphere. At =0.002 msec.
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increased convergence rate (Table 4). This behaviour
is similar to that noted for plate—fluid interaction
problem. The time required for the wave to reach
the end of fluid mesh is 0.5 msec. Here there is a
transition from compressible to incompressible
behaviour of fluid model due to temporal
discretization.

Interior shell-fluid interaction problem

Another problem used for study was of a spherical
shell containing a fluid shown in Figure 5a. Here a
thick spherical shell filled with a fluid was analysed
for an impact pressure of 100 kg/cm? applied at
outer shell pole. The pole pressure response is
compared with results of References 5 and 6. The
present results predict a very high pole pressure.
The results at a radius of 6.5 in and at an angle of
5° from vertical axis (centre of pole element®) are
close to the reported results as shown in Figure 5b
for implicit integration with time steps of 2.5 x 10~?
msec and 3.125 x 10~ * msec. However, the present
results show superposition of pressure waves in
latter part of response after 0.2 msec. This is the
time for the wave to reach back to the top pole after
reflection from the lower pole which is not
prominently depicted>-°.

100 Kg/cm’
R=7.0 in

SPHERICAL SHELL
5
E =14 x 10 Kg/cm?
N=03
$3=2x 10 Kg g2am*

FLUID
A H
K =21x 10 Kg/cm
o= 10° Kg g2 / cm*

8 NODE ELEMENT MODEL

R=65in08=5¢§ =-05
= 0.66667 )

Figure 5a Interior shell-fluid interaction problem

Table 4 Number of iterations in computation path 2 for submerged spherical shell problem with /-/ partitioning

Compressible Transition Incompressible
Time step (msec) — 0.01 0.08 0.1 0.5 0.6 0.8 1.0 2.0 5.0 10.0
Number of iterations 5 12 14 150 232 145 65 14 7 6
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Figure 5b Interior shell-fluid interaction (8 node). 0, Ref. 6;
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Further investigations were made with four-
noded shell fluid mesh (Figure 5¢). This is similar
to the model used in Reference 5. Figure 5d shows
the response at pole and at R=6.51n and at an
angle of 5° from vertical axis (centre of pole element)
for implicit integration with a time step of
2.5x 107 msec. Again similar results are obtained
as mentioned earlier with eight-noded elements. The
two results are compared in Figure Se. The problem
was then analysed with a time step of 0.01 msec
(same as that in Reference 5) for the four-noded
element mesh with implicit integration. The results
are shown in Figure 5f. Here it is clear that the
present impact pressure at pole centre is in close
agreement with that reported in Reference 5.

The critical time steps for four-noded element
model are 3.0 x 10~ * msec and 8.7 x 10~ * msec for
fluid and shell meshes respectively. Here time step
size for explicit integration is governed by fluid
domain. So at first an E-E partitioning for fluid
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IMPACT PRESSURE (Kg/cm»#2)

120.9 180.p 230.0

TIME(m SEC)

e 628

Figure 5e Interior shell-fluid interaction. O, Ref. 6; 1, 8 node;
2, 4 node; At=2.5x10"?msec; response at R=6.5in (1=5"
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Figure 5g Interior shell-fluid interaction (4 node). O, Ref. 6; 1, /-/,
At=25x10"*msec; 2, E-E£, At=3.0x10"*msec; response at
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Figure 5h Interior shell-fluid interaction (4 node). 0, Ref. 6; 1, /-/,

At=25x10"*msec; 2, E-I-/, At=8.2x10"*msec; 3, E-/-E,

At=80x10"*msec; 4, /-/, Atr=80x10 *msec; response at
R=6.5in =5

and shell was made. The results with a time step of
3 x 10~ * msec are shown in Figure 5g where results
of I-I partitioning with a time step of 2.5 x 10~ msec
are also shown. If the elements near the centre of
fluid mesh are removed the critical time step for
fluid is 8.2 x 10™* msec. This suggests that E-I
partitioning with the fluid mesh (implicit scheme for
finer elements at centre) and explicit or implicit
scheme for shell would be advantageous. Figure 5h
shows the results for E-I fluid I shell partitioning
with a time step of 8.2 x 10~ * msec and E—I fluid E
shell partitioning with a time step of 8.0 x 10~ % msec.
In the same Figure results of I-I partitioning for
fluid and shell with time steps of 2.5 x 1072 msec
and 8 x 10~ * msec respectively are also shown for
comparison. Here it may be noted that results of
E-E and E-I partitionings show some oscillatory
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behaviour which is due to the spurious high
frequency contribution. In pure implicit calculations
(I-I) these spurious modes are not present.

The present results show different behaviour than
reported elsewhere®®. Further investigations were
made by selecting damped Newmark algorithm
(y=0.6 and f=0.3025). This removes the effects of
spurious mode but introduces some numerical
damping. Figure 5i compares results of trapezoidal
rule (y=0.5, f=0.25) and damped Newmark
algorithm for eight-node mesh with I/ partitioning.
Similar comparison is made for four-node mesh in
Figure 5j. These results also indicate the presence
of reflected wave from lower pole at nearly 0.2 msec.
For this problem also path 2 is the optimum one.
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Figure 5/ Interior shell-fluid interaction (8 node). O, Ref. 6; 1, /-/,

y=0.5, f=0.25; 2, /-/, y=0.6, $=0.3025; response at R=6.5 in
fA=>5°
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Figure 5§ Interior shell-fluid interaction problem (4 node). 0, Ref. 6;
1,/ y=0.5, f=0.25; 2, /-, y=0.6, f=0.3025; response at f =6.5
in =5



CONCLUSIONS

It is found that based on the stability criteria for
numerical integration of single field problems, time
step estimates could be made for coupled field
problems if minimum time period estimates are
available for individual fields. For E-I partitioning
there is a small reduction in the time step (of about
10 to 20% of At,,) from convergence requirement.
This is of the same order as reported by
Belytschko!'? for non-linear problems, since in the
present case also the interaction term may be
regarded analogous to pseudo force term of
non-linear dynamic problems. E-I partitioning
could be exploited for problems where fluid
minimum time period is larger then structure
minimum period (this is often the case in many
problems). Again individual fields also could be
further partitioned if they have some stiff elements
(either due to material properties or due to finer
discretization). This has been demonstrated in
problem 5. For problems where structure first
transfers load to fluid path 2 (structure then fluid)
is useful. In this after the predictor phase, correction
is made in structure response in Newmark
predictor—multi-corrector integration scheme. For
problems of wave propagation in fluid where a
pressure pulse in fluid moves and transfers load to
structure path 3 (fluid then structure) is useful.

Although I-I partitioning is costly in terms of the
time required for solution of equations, nevertheless
the number of iterations for convergence per time
step is small. Thus this method could also be
exploited since only the accuracy and convergence
requirements are to be met for this type of
partitioning. The characteristic of unconditional
stability is retained up to a very large time step for
coupled problems also if correct computational path
is selected. Time step estimate for fully implicit
calculation could be made in such a manner that
numerical model gives compressible solution. This
can be easily estimated from characteristic length
of fluid structure system. The optimum choice
between E-I and I-I partitioning will depend on
the order of time steps for fluid and structure
meshes.

In staggered scheme the representation of shock
fronts, pressure transients are more accurate
compared to continuum mechanics approach and
reliable structure response is also obtained. This
methodology is very well suited for modular
adoption for a variety of coupled linear and

Fluid-structure interaction problems: R. K. Singh et al.

non-linear fluid and structure problems in parallel
processing environment.

APPENDIX 1

Fluid domain Qf

Pressure in the element is given by shape function
N, and nodal pressure p by:

p=N;p (L)

Fluid element mass matrix is:

N_Tl-N“Jrl/gJ NF Ny dlp (12)

I'r

(Mj:)u= 1/C2 J

Qy

Fluid element radiation damping matrix is:

(C;)ijz I/Cj

I'r

NT.N,; dTg (1.3)

Fluid element stiffness matrix 1s:

(Kjr)ijzj‘ (Nfi: XN”, x+ Nfia yNj’ja y) de (1.4)
Qs

Structure domain Q,

Displacement & in the element is given by shape
function N, and nodal displacement u:

6=N.u (1.5)
Structure element mass matrix is:
(M;!)lj:J' r()sN;Est d‘Q‘s (16)
Qs

where p, is the mass density of structure element.
Structure element stiffness matrix is:

(Kf)ij:J BimDkakj dQs (1-7)
Qs
where B and D are strain displacement matrix and
constitutive law matrix respectively. These are given
in References 15 and 16.

The structure damping matrix is obtained by:

C,=aM,+ bK, (.8)

where a and b are constants to control damping
proportionately.
Coupling matrix at fluid structure interface is:
T

where 7 gives unit normal components at fluid
structure interface.
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APPENDIX II

Predictor-multi-corrector algorithm for
semi-discrete coupled second-order equations®'*
Second-order equation® at time step n+1 is

given as:

Mii, ., +Cu,,, +Ku,,,=F?, (I.1)

i=0 (i=1iteration count) (11.2)

W,y =i:1.,+ 1 (I1.3)

u,,, =u,, /predictor phase (11.4)

i, =0 (I1.5)

where

U, =0,+At(1 —y)i, (11.6)
U,.,=u,+Ara, +3A2(1=2p)ii,  (I1.7)

v and f are Newmark’s parameters, At is the time
step.

Notes

1. Subscript is dropped as it may be used for any
field.

2. The force augments applied force, specified
boundary condition and interaction term.

3. y=1 B=(y+1)*/4 leads to unconditional stabil-
ity for single pass single field problem.

4. Mesh partitioning is possible by recognizing
elements either as explicit or as implicit:

M=M'4+M¥* (IL.15)
C=C0F (11.16)
K=K'+K* (IL.17)
F=F'4+FF (11.18)

and modifying the governing (II.1) as:
M'ii, , +MPid, ., +Cha,y +Ku,
—Fl,, +FE,, (IL19)

> % bl
K AU— n+1

K*=M/pAt* +yC/BAt + K

i _ i i i i
at1=Fy 1 —Mi,,, —Cua,,, —Ku,

i+l _ i i
u,=u,,, +Au

) Sl | i+1

it =Wt —q,, ,)/BAt? jcorrector phase
Vit 1 i Al
Uy =0, +yALE, L

Check convergence ||Au’|/||u’* || < Tolerance

i—i+1 NO

solution phase

YES

n—n+1 and go to (I1.2) for next time step.

5. Lumping of M is done by special lumping
technique'”.
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ABSTRACT

Theoretical investigations have been performed on
slowly propagating cracks in T-junctions and cross
bars using computer procedures developed to
analyse the amount and direction of crack growth
using automatic mesh modification and the finite
element stress analysis program, BERSAFE. The
procedures may be used in a linear or non-linear
material. The crack growth for the linear elastic case
is calculated to be in the direction of the maximum
energy release rate. For the non-linear case, the
direction is taken to be that of J¥ . These procedures
have been applied to fatigue crack growth
calculations in this paper.

INTRODUCTION AND BACKGROUND

Numerical modelling of fracture processes is an area
which has seen many advances recently. These
advances have provided effective and accurate ways
of evaluating fracture parameters for assessing the
integrity of structures containing defects. For
example, the repair or replacement of defective
structures can be avoided if it can be shown that
defects will not grow in service. The simulation of
crack propagation can also be approached more
effectively using these parameters. The main concern
is then to predict how long the component will
operate safely under service conditions.

Suitable parameters for characterizing the amount
and direction of crack growth in a non-linear
material are the components of contour integrals
(J)% around crack tips. When non-linear effects
are unimportant their values are simply related to
the stress intensity factor, K. Energy methods such

0264-4401/90/020116-11$2.00
© 1990 Pineridge Press Ltd
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as the virtual crack extension techniques® > are also
well established.

An extensive review of the contour integrals has
been given by Hellen and Blackburn®. A numerically
robust integral which has a wide range of validity is:

Jﬁl.—J(dez_ﬂ%ds> (1)

Xq
for a small contour around the crack where:

(x{, x,)=coordinates along and perpendicular to
the crack plane,
u;=components of displacement,
T;=components of tractions,

and for stresses, o,; and strains, ¢;; related by the
strain energy potential W, where

aw

O'i.=7
J
oty

(2)
This may be evaluated on other contours as a
contour integral plus a surface integral over the area
between®.

Catalogued procedures called BERCRAG’ have
been developed to analyse the growth of a crack
using automatic mesh modification and the finite
element stress analysis program BERSAFE®. Using
these procedures calculations of the direction
of crack growth have been performed on slowly
propagating cracks in T-junctions and cross bars.
Displacement conditions were imposed to produce
tensile loading on the base and bending on the arm.
Crack propagation paths were predicted for a
number of initial crack orientations and sizes for
varying tension to bending ratios for the linear
elastic case. A smaller number of cases have also
been analysed for a non-linear material.

BERCRAG

Automatic mesh modification programs were
written to modify a two-dimensional or axisymmetric
mesh containing a crack with four quadrilateral
elements around the tip by allowing for slow crack
growth. These were also extended to three-
dimensional meshes with a crack on its boundary
representing a plane of symmetry.

The procedures may be used for a crack in a linear
or non-linear material. In a linear elastic material,
the crack growth is usually due to fatigue. For
non-linear materials, three different crack laws are
available; fatigue, creep and ductile tearing. A
further option is also available where the combined



