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SUMMARY 

An element formulation is suggested to obtain variable order singularities simultaneously at the two 
neighbouring corner nodes of a 4-noded quadrilateral. The element is useful for modelling a kinked crack 
with small kink length. The accuracy is good and this is obtained at a substantially reduced computational 
cost. Case studies are presented to illustrate the usefulness and the accuracy obtainable. 

Under mixed mode loading a crack leads to an out-of-plane extension and hence kinking. In 
stable crack propagation studies under this type of loading, one has to deal with kinked cracks. 
For a small kink length, an analysis of the problem is difficult owing to the existence of two 
singular points at a close distance. At the crack tip, there is a square root singularity, whereas at 
the knee the order of singularity depends on the kink angle.' One obvious strategy is to use the 
well-known quarter point elements2 at the crack tip for the simulation of square root singularity 
and the 3-noded variable order triangular singularity elements3 at the knee. The two elements 
must be separated by a number of conventional elements. This will usually lead to a large number 
of elements and nodes and hence more computational cost. One alternative strategy is to use one 
single element to cover the whole kink length. This would therefore require an element with two 
variable order singularities at the two neighbouring corner nodes. 

In the following we present a formulation to generate such an element with four nodes. The 
element is called a two singular points (TSP) element. An adoption of this element in a 
displacement based finite element computer code is quite easy. The element has been used first to 
study a kinked crack problem analysed by earlier investigatorsq3 It is then used to examine a 
kinked crack with different kink angles. In this case J's are computed and compared with 
analytical results based on the first order approximate method of Cotterell and Rice4 and those 
due to finite element computation by Sethuraman and ~ a i t i . ~  The effect of mesh refinement on 
computation of J and the path independence of J are examined in this case. A third case study is 
presented to show the range of kink sizes with respect to the main crack that can be modelled by 
the TSP element. 
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ELEMENT FORMULATION 

Consider a 4-noded quadrilaterai element as shown in Figure I(a). The element can be mapped 
into a square in the conventional (t, q )  system of natural co-ordinates (Figure l(b)). Consider now 
a local co-ordinate system (p ,  , p,)  defined by 

111 this ( p , ,  p,) system the cs-ordinates sf the four corner nodes are shown in Figtire: l(b). Tlie 
equations of the four sides of the element are 

L,,=g,+p,-0.5==0, forsifBe1-2 

E,,= - p ,  +p,+O.S=O, for side 2-3 

E,, = p ,  + p, - 1.5 = 0, for side 3-4 
and 

L,, = - p ,  + p, - 0.5 = 8, for side 4-1 

Figure 1. illustration used to derive ttre displacement shape functions for a TSB element 



'' DEVELOPMENT OF FINITE ELEMENTS . . 1451 

The conventional shape functions associated with the four corner nodes can be written as. 
. . . . .  . ' .  

Nl = -(- ~ 1 . 4 -  p2 + Oe5)(p1 + p2 - 1.5) = clL2,L34 

N2 = (PI +P2 - 1-51 ( -PI  + ~2 - OS5) = C~L34L4~ . . 

N3= -(-pl +p2-0*5)(pl + P ~ - ~ * ~ ) = C ~ L ~ ~ L ~ ~  (3) 

and . . 

N ~ = ( ~ ~  +p2-0.5)(-pl + p i  + 0 * 5 ) = ~ 4 ~ 1 2 ~ 2 3  
. . . . 

Note that C1 = C, = - 1 a id  C2 = c4= 1. These ire obtained from the fact that Ni is 1 at node 
i, i = 1,2,3 and 4. Consider a mapping a = pi1 and P = p$. a and P form an orthogonal system of 
co-ordinates. The element in the (o(,j?) system is shown in Figure' l(c). The equation of the four 
straight lines joining the nodes is 

,, . 

where Aij and Bijare constants. Four shape functions can be then constructed using (3). Ci is 
adjusted such that N,  is unity at node i.'~hese shape functions are given below explicitly. 

. . 

and 

where 
A,, = 2"/212 

BIZ= - i/2I2 . 
. . 

c, = ~22" (1 12")2]/[22" (1 1 $2)3 
., , ' 

. . . 
. . A,,= 2*1/~2"((1:-2'1)1 ' 

. . .  . . 

B2, = 1/[2"(2".- 1)] 
, '. 

. . .... . . . .  . . . . C 2 = l  . .  . " '  " . 
. . .  . . 

. . .  8 . .'. , . . .  . . . 
. . 

. . B41 = - 1./2'2 ' ' . . 

and . . . .  
. . 

, : _  : . . 

.C4= 1 ; .  . ' . . . .. . . 
. . 

. : .. . . 
. . 

. . 
. . . . 

, . .  . . . 

4 4 

If the displacement field is written 'using these shape,'fuictions, i.e. u = Niu, and v = N,vi, 
1 , .  1 

an element is' obtained which :dispiayst stfiin/st'res$ $ingul'arit&s' a t .  the corner's 1 and 2.  he 
orders of singularity are' - 1 + A, and - 1 + 2,. The element meets the completeness requirement, 

I 
I 
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4 

i.e. Ni = 1, only when 1, = A2 = 1. The derivatives of the shape functions with respect to (t, q )  
1 

are given by 

a ~ i / a e  = aNilap1 apllat + aNllap2 ap21a.t 
and 

aNila.rl= aNilaP1 ap11att + a y a p 2  ap21art 

Using apl/dt = 0.25, a p 2 / a e  = -0.25, dpl/aq = 0.25 and ap2/aq = 0-25 these derivatives can be 
written finally in the following form.' 

aNl/ac = Cl [Alp:!-' [ 2 ~ 2 3 ~ 3 4 p i '  + (A23 + ~ 3 4 ) P p  

+ (A23834 +A34B23)I - 2 2 ~ : ' ~ ~  [(A34 + A 2 3 ) ~ : '  

+ ~ P P  + (B3k + B231II/4 

+ (A41 B12 + A12BSl)l+a2~?-1 . C(A12 f A 4 1 ) ~ : 1  

. . + ~ P F  + ( ~ 1 2  + ~ ~ i ) l l l 4  

aN4/aE= C ~ [ J ~ P : ' - ~  [2At2A23P:' (A.12 +Azo)P? 

+(A12B23 + A ~ ~ B ~ ~ ) I  - X 2 ~ ? - : ~ ( ~ 2 3  + 
+ 2 ~ ?  + (B23 + B12)'Jl/4. 

~ d a t l =  c4LA1 wIZ A23~: '  + i~~~ + ~ 2 3 1 ~ 9  

f (A12 B23 + A23B12)I + 2 2 ~ 2 - l  [(A23 + A12)~:' 

. . + Zp? + (B23 + B12)]]/4 . . . .  :. . .  . . 

~hese'derivatives clearly show that there are singulirities of order (- 1 +:A1) and (-:I + A2) at 
the points pl..+ O'and p2 +.O respectively. . . . . -. . . . . ,  . .. . 
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EXAMPLES 
The TSP element has been incorporated in a 2-D finite element code 'CRACK'." A few case 
~tudies are presented below. In all examples a plane stress situation has been assumed. 

The first example deals with a branch crack in a long elastic tension strip with details as shown 
in Figure 2. This problem has also been studied by Tracey and The tip of the crack has a 
singularity given by 2, = 0.5 and the singularity at the knee is given by %, = 0.674. Tracey and 

Figure 2: (a) Single edge kinked crack in alongtension strip. (b) ~iscretization details away from 
(c) and (d) Two discretization schemes around the knee and crack tip, 

the knee and crack tip. 
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Table I. Computed mode I SIF for single edge kinked crack in a long tension strip 

Computed SIF (kg rnmm3l2) using discretization schemes 

Tracey and Cook Triangular elements Rectangular elements 
[l 977 ] (Figure 2(c)) (Figure 2(d)) 

Singularities Singularities Singularities 
not Singularities not imposed 

imposed 'imposed imposed (i.e. TSP) 

Cook3 have used the 3-noded trrangular variable order singularity elements around the crack tip 
and at the knee to model the two singularities. Apparently ten elements are used in between the 
knee and the crack tip. The details of discretization and loading are shown in Figure 2. Two 
discretization schemes were considered. In the first case, only triangular elements were used in 
between the knee and the crack tip and, in the second case, only one rectangular element was used. 
Stress intensity factors (SIFs) were calcuIated based on a direct displacement comparison at A 
(Figure 2) on the crack face. Computations were done with and without imposition of singularities 
at the tip of the kink and knee. Mode T SIFs are compared in Table I. The Mode II SIF was found 
to be of the order of 0.001 kg mm-3f2. 

The second example considered is shown in Figure 3(a). The order of singularity at the knee 
changes with the kink angle 8.6 was varied in the range 15" to 90°, in steps of 15". The values of A at 
the knee corresponding to the six kink angles' are shown in Table 11. The similar problem has 
been studied earlier in References 5 and 7 using quarter point triangular singularity elements at the 
crack tip and 6-noded triangular elements around the knee..In all 667 nodes and 210 elements 
were used in these investigations.' . . . 

The element arrangements near the crack tip for 8 = 90" and 45" are shown in Figures 3(c) and 
3(d) respectively. The far away'region is discretized as shown in Figure 3(b). To permit a study of 
the case 0 = 75", the discretization shownin Figure 3(c) was amended by modifying the relevant 
nodal co-ordinates. Similarly the discretization shown in Figure 3(d) was modified to accommod- 
ate the cases 8 = 60°, 0.= 30" and 8 = 15". Most of the elements used were 4-noded quadrilaterals. 
Few variable noded elements .were employed in the transition zones between coarse and fine 
regions. The J-integral was computed along the three contours lying in the region bounded by the 
curves c, and c, as shown in Figures 3(c) and 3(d). It may be noted that, in the presence of the TSP 
element, a portion of the J contour must lie within this element; the remaining portion can, 
however, be made to pass through different elements. 

The effect of near tip mesh refinement on computed J was studied by considering three different 
discretizations. To facilitate these three cases a refined element arrangement (Figure 4) is 
introduced. The first discretization corresponds to a combination of Figures 3(b) and 3(d). The 
second one corresponds to a combination of Figures 4(a) and 3(d). The third scheme corresponds 
to a combination of Figures 4(a) and 4(b). For this study 8 was considered to vary from 15" to 60" 
only. 

Table 111 presents iisults related to the path independence of J and the influence of mesh 
refinement on J computation. In this table J based on the analytical method4 is also included. 
Average 3 values are compared with the analytical results4 and computed values of Reference 5 in 
Table 11. The influence of mesh refinement on the:crack,,opening displacement (COD) in the 

. ., . . loading .direction at the kneek shown in -Table IY. . . . 
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* %.of elements= 146 D 

No. of nodes, = 170 

( b )  NO. of elements = 152 

No.of nodes - 172 
( d l  

Figure 3. (a) Double edge kinked cracks in a tension strip. (b), (c) and (d) Discretization details 

The third example (Figure 5) deals with an asymmetrically branched crack in an infinite plate 
subjected to uni-directional tensile load. This type of problem has been studied analytically by 
many  investigator^.^-^^ Only the case of a 45" branched crack was examined here. For the 
proportion of the crack shown in Figure 5 the plate can very well be treated as an infinite body. 
The discretization scheme employed is shown in Figure 5. In this analysis the kink dimension was 
held constant but the main crack length was varied. The first case was considered with the main 
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Tabel 11. Comparisons of J in the double edge kinked cracks in a tension strip 

J (kg mm/mm2) 

Finite element Percentage diff- 
Kink Analytical based Present erence with 
angle 1 (Ref. 4) (Ref. 5) computation analytical 

Figure4. A refined discretization for the double edge kinked crack: (a) discretization away from the kink; (b) 
discretization near the kink 

crack extending from 1 to 9 and the kink extending from 9 to 10 (Figure 5). For the second case 
the left hand tip of the main crack was shifted from location 1 to 2 and the appropriate pair of 
nodes lying between 1 and 2 were made to coalesce. Thus seven cases were studied by varying the 
left hand tip locations from 1 to 7 (Figure 5). The J integral was computed along three different 
contours. A comparison with the results of Lo8 is presented in Table V and Figure 6 for different 
ell ratios. Lo's results, which are quoted in terms of K,  and K,,, were converted in terms of J for 
this comparison. 



DEVELOPMENT OF FINITE ELEMENTS 1457 

Table III. Effect of mesh refinement on J computation in the case of double edge kinked crack problem 

J (kg mm/mm2) 
--. 

Mesh 1 Mesh 2 Mesh 3 
(No. of elements = 152. (No. of elements = 236. (No. of elements = 256. 

No. of nodes = 172) No. of nodes = 275) No. of nodes = 287) 

Based on 
Analytical three 

8 (Ref. 4) contours 

Based on 
three 

Average contours Average 

Based on 
three 

contours Average 

Table IV. Influence of mesh refinement on crack opening displacement 
(COD) in the loading direction at the knee 

COD (mm) 
Kink angle 

0 Mesh 1 Mesh 2 Mesh 3 

DISCUSSION AND CONCLUSIONS 

The formulation given above presents a radical approach for modelling arbitrary singularities 
occurring at two neighbouring points in a domain by a single element. The new element offers a 
very elegant and computationally advantageous way of modelling a propagating crack that is 
handled in a step-by-step analysis, short kinked cracks, corrosion cracks, etc. The element 
formulation is straightforward and can be easily incorporated in a displacement based finite 
element package. The case studies presented here indicate that the accuracy of results is improved 
by using the TSP element in the discretization and this is achieved with a great reduction in 
computational cost. 
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Figure 5. (a) Asymmetrically branched crack in an infinite plate under tension. (b), (c) and (d) Discretization schemes 
near to and away from the crack 
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Table V. Comparison of analytical and computed J for the case of asymmetrically branched crack in 
an infinite plate 

Computed J (kg mm/mm2) 

Based on EJ - 
different EJsverage g2 nc Percentage 

c e l l  contours Average cr2 nc (Ref. 8) difference 
- 

0.005 175 
0.5 12.5 0.005089 00051756 0.69193 0.681 12 + 1.58 

0.005263 

In the first example, the single edge kinked crack problem, the TSP element helps to obtain 
better accuracy than the best attainable using the existing singularity  element^.^ In the second 
example, the double edge kinked crack problem, the computed J values (Table 111) are reasonably 
path independent and are affected marginally by the mesh refinement. We observe that, for 
8 > 60°, the path independence characteristics of computed J are affected. The difference between 
the average and the analytical J is less than 6 per cent (Table 11). On the whole we are able to 
obtain an accuracy close to that of Reference 5, in spite of a very low number of nodes (about a 
fourth) being used in our analysis. There is no reference which could facilitate a comparison of the 
COD'S. However, Tables 11, 111 and IV, can be taken to mean that the displacements have 
reached a good state of convergence and these can be determined reasonably accurately using a 
coarse discretization around the crack tip in the presence of a TSP element. 

Xn the third example the computed results are comparable with the analytical solution for the 
ratios of kink length to half crack length (ell)  varying from 1 (approximately) to 12-5. Therefore 
the TSP element can be used not only in the case when the kink length is suEciently small 
compared with half the main crack length but also for the case when the kink length is 
comparable to half the main crack length. The TSP element, as it stands, does not meet the 
completeness requirement. This could lead to difficulties for its adoption in thermal stress 
problems, Efforts are now being directed to eliminate this shortcoming. 
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d 

- ANALYTICAL [LO, 19781 

Figure 6. Comparison of analytical and computed J for the case of asymmetrically branched crack in an infinite plate 
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