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SUMMARY

An element formulation is suggested to obtain variable order singularities simultaneously at the two
neighbouring corner nodes of a 4-noded quadrilateral. The element is useful for modelling a kinked crack
with small kink length. The accuracy is good and this is obtained at a substantially reduced computational
cost. Case studies are presented to illustrate the usefulness and the accuracy obtainable.

INTRODUCTION

Under mixed mode loading a crack leads to an out-of-plane extension and hence kinking. In
stable crack propagation studies under this type of loading, one has to deal with kinked cracks.
For a small kink length, an analysis of the problem is difficult owing to the existence of two
singular points at a close distance. At the crack tip, there is a square root singularity, whereas at
the knee the order of singularity depends on the kink angle.! One obvious strategy is to use the
well-known quarter point elements® at the crack tip for the simulation of square root singularity
and the 3-noded variable order triangular singularity elements® at the knee. The two elements
must be separated by a number of conventional elements. This will usually lead to a large number
of elements and nodes and hence more computational cost. One alternative strategy is to use one
single element to cover-the whole kink length. This would therefore require an element with two
variable order singularities at the two neighbouring corner nodes.

In the following we present a formulation to generate such an element with four nodes. The
element is called a two singular points (TSP) element. An adoption of this element in a
displacement based finite element computer code is quite easy. The element has been used first to
study a kinked crack problem analysed by earlier investigators.® It is then used to examine a
kinked crack with different kink angies. In this case J’s are computed and compared with
analytical results based on the first order approximate method of Cotterell and Rice* and those
due to finite element computation by Sethuraman and Maiti.> The effect of mesh refinement on
computation of J and the path independence of J are examined in this case. A third case study is

presented to show the range of kink sizes with respect to the main crack that can be modelied by
the TSP element.
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ELEMENT FORMULATION

Consider a 4-noded quadrilateral element as shown in Figure 1(a). The element can be mapped

into a square in the conventional (£, #) system of natural co-ordinates (Figure 1(b)). Consider now
a local co-ordinate system (p,, p,) defined by

pr=02+{+m/4 and p,=(2-L+1n)/4 (1

In this (p,, p,) system the co-ordinates of the four corner nodes are shown in Figure 1(b). The
equations of the four sides of the element are

Liy=p; +p,—05=0, forside 1-2
Lyy=—py+p,+05=0, for side 2-3

Ly, =p,+p,—15=0, for side 3-4
and

Lyy=~p;+p,—05=0, forside 4-1
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- Figure 1. Hlustration used to derive the displacement shape functions for a TSP element
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The conventional shapc functlons assocxated w1th the four corner nodes can be written as
= ‘( Pl “’f‘Pz +05)(P1 +pa—15)=C,Ly3 Ly,
Nz= (o1 + P2~ 15)(— —P1tpy— 05)=C,L3, Ly,

3)
Ny= —(~ P1+Pz“05)(P1+P2‘05) C3L41L12

and
4*(P1+Pz"05)( P1+P2+05) CyLyyLyy

Note that C, -C3— —-l and CZ-C,,-I These are obtamed from the fact that N is 1 at node

i,i=1,2,3and 4. Consider a mapping « = p}' and f = p32. « and § form an orthogonal system of
co-ordinates. The element in the (e, B) systemis shown in Figure 1(c). The equation of the four
straight lines joining the nodes is

Lij=Alja+ﬁ+Bu . .
=Ayp} +p%+B; )

where 4;; and B;;-are constants. Four shape functions can be then constructed using (3). C; is
adjusted such that N, is unity at node i These shape functions are given below explicitly.

N, = Cx_(Azsf’x ’ p3 + B23)(Asapi + p¥ + Byy)
N,= C,(Az4p} +_P§2 +Bs4) (A4_1 p}t+p¥+ Byy)

. o . (%)
N3=C;3(Ayypt* + Péz + _341)(sz40§‘ + p% + By,)
and ' ' ' _
Ny= C4(A;2p1 + p3* + Bi,y) (Aas p} + o3 + st)
where . : '
Ay = 2“/2*2
Bjp=—1/2"
Ci=[2R(1=2PY [ (1= 2]
Ayy= 2"‘/[2‘2(1 2“)] '
Bza = 1/[2)'2(21’ - 1)]
C,=1.. -
" 2 1 2 (6)
Ay=[2%(1-2 2):l/[z 2(1 -2 01
By,= [2’“(?-'12 1)]/ [2"(1 2’“)] - 1/2‘2
' C 2231/[227.; (1 27.2)]
Ay =2M (1= 2*2)/2*2 -
By=—1/2% '~
and S
Cu=1.

If the dxsplacement field is written using these. shape functlons, ie. u -—Z Nyu; and v —Z N;v;,

an ‘element is’ obtamed ‘'which dlsplays strain/stress’ smgulantles at. the corners 1 and 2 The
orders of singularity are — 1+ 4, and — 1 + 1,. The element meets the completeness requirement,

1
'
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4 . . .o

ie. Y. N;=1, only when 1, = 1, = 1. The derivatives of the shape functions with respect to (£, )
1

are given by

ONJOE = ON,Jdp, 0py/3¢ +BN,/dp, dp, /0%
and

ON,/on=0N;/0p, 0p,/0n + ON;/dp, Op,/0n

Using 8p, /3¢ = 025, 0p, /0§ = — 025, dp,/0n =025 and dp,/dn =025 these derivatives can be
written finally in the following form.”

0Ny /38 =Cy[Ap7 ™" [2A23A34pé1 +(Az; + A3a) P
+(A23Baa+ A3aBaY]— A3 " [(Ase + Azs) ot
+2p3* + (B34 + B23)]1/4

Ny /0= Cy [Xy ™ [2453 A34p} +(Az3 + A34) p¥
+(A23B3q+ A34B23) 1+ 22977 [(A;r*.' Az)pl
+2p7 +(Ba+Baa)])/4

IN,/0¢=C,[Ay i~ 1 [2434Aa1 1 +(Ass + A1) P
+(A34Bay + A4 B34)] = 22077 [(Aay + 434) 1
+2p3 + (Bay + B3a)11/4

. ONo[on=C,[ 2y p1* ™} [2434 Aarpi* + (Ass + Aar) p7°
+(A34Bar + Aa1 B3a)1 + 2203 [(Asy + A34) 1
+2p3* 4 (Byy + B3s)11/4 ;

ON3/08=C3[Ap} ™ [2441A12pT + (Aay + A12) P37
+(A41Byp + A1 Byy)] = App™? (412 + Ay)pt
+208 + (B + B4

ON;3/0n=C3[A1p3 " [2441 A120} + (Aay 'l‘.Alz)Pé’L
+(A4yByp + A12B41)] + 220327 (A2 + Agy) o1

+2p7 + Byt 341)]]/4

ON,[0%=C, [ pp 1 [2A12A2391 + (4,2 + Ay3)p3?
+(A12B23+ A3 By5)]— lzP 2" [(Ays+ Aya) 1
+2p3 +(Bys + Bo)1/4 '

ON,[0n=Cy[A1p3 " [2412 45303 + (A + Ays) P2

+(A12Bas + A23B12)1+ 42037 [(Aas + Azz)Pf’
-+ 2p3 + (B3 + By,)11/4

These derwatxves clearly show that there are singuldrities of order (—1 + ll) and ( 1+ Az) at
the points p;- ~0-and p»—0 respectively. . . .

U]
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EXAMPLES

'81;?[3 iZsS:r :l;xrr;::;thgsbbfcn i;lgoxiforated in a 2-D finite element code ‘CRACK’.® A few casc
ed below. In all examples a plane stress situation has been ass : N

The first example deals with a branch crack in a lo i o strip wit o

Th : ng elastic tension strip with details as s

in Figure 2. Thls problem has also been studied by Tracey and Cook.? Thpe tip of th‘::lczsr:Zl:};l?x‘:l;

singularity given by A, =05 and the singularity at the knee is given by A, =0-674. Tracey and
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Figure 2, (a) Single edge kinked crack in a Jong tension strip. (b) Distcretization details away from the knee and crack tip.
' (c) and (d) Two discretization schemes around the knee and crack tip. o
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Table I. Computed mode 1 SIF for single edge kinked crack in a long tension strip

Computed SIF (kg mm~*/2) using discretization schemes

Tracey and Cook Triangular elements Rectangular elements
[1977] } (Figure 2(c)) (Figure 2(d))
Singularities ‘ Singularities Singularities
not Singularities not imposed
imposed ‘imposed imposed (ie. TSP)
2317 1-720 2:081 2:068 2248

Cook? have used the 3-noded triangular variable order singularity elements around the crack tip
and at the knee to model the two singularities. Apparently ten elements are used in between the
knee and the crack tip. The details of discretization and loading are shown in Figure 2. Two
discretization schemes were considered. In the first case, only triangular elements were used in
between the knee and the crack tip and, in the second case, only one rectangular element was-used.
Stress intensity factors (SIFs) were calculated based on a direct displacement comparison at A
(Figure 2) on the crack face. Computations were done with and without imposition of singularities
at the tip of the kink and knee. Mode I SIFs are compared in Table I. The Mode II SIF was found
to be of the order of 0:001 kg mm ™32,

The second example considered is shown in Figure 3(a). The order of singularity at the knee
changes with the kink angle 6. 0 was varied in the range 15° to 90°, in steps of 15°. The values of 1 at
the knee corresponding to the six kink angles! are shown in Table II. The similar problem has
been studied earlier in References 5 and 7 using quarter point triangular singularity elements at the
crack tip and 6-noded triangular elements around the knee. In all 667 nodes and 210 elements
were used in these investigations.”

The element arrangements near the crack tip for 0 =90° and 45° are shown in Figures 3(c) and
3(d) respectively. The far away region is discretized as shown in Figure 3(b). To permit a study of
the case 6 = 75°, the discretization shown in Figure 3(c) was amended by modifying the relevant
nodal co-ordinates. Similarly the discretization shown in Figure 3(d) was modified to accommod-
ate the cases 8 = 60°, @ = 30° and 6 = 15°. Most of the elements used were 4-noded quadrilaterals.
Few variable noded elements were employed in the transition zones between coarse and fine
regions. The J-integral was computed along the three contours lying in the region bounded by the
curves ¢, and ¢, as shown in Figures 3(c) and 3(d). It may be noted that, in the presence of the TSP
element, a portion of the J contour must lie within this element; the remaining portion can,
however, be made to pass through different elements.

The effect of near tip mesh refinement on computed J was studied by considering three different
discretizations. To facilitate these three cases a refined element arrangement (Figure 4) is
introduced. The first discretization corresponds to a combination of Figures 3(b) and 3(d). The
second one corresponds to a combination of Figures 4(a) and 3(d). The third scheme corresponds
to a combination of Figures 4(a) and 4(b). For thls study 6 was considered to vary from 15° to 60°
only.

Table III presents results related to the path mdependence of J and the influence of mesh
refinement on J computation. In this table J based on the analytical method* is also included.
Average J values are compared with the analytical results* and computed values of Reference 5 in
Table IL. The influence of mesh refinement on the crack. openmg dlsplacement (COD) in the
loadmg dxrectlon at the knee'is shown in Table IV.
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Figure 3. (a) Double edge kinked cracks in a tension strip. (b), (c) and (d) Discretization details

The third example (Figure 5) deals with an asymmetrically branched crack in an infinite plate
subjected to uni-directional tensile load. This type of problem has been studied analytically by
many investigators.®~'? Only the case of a 45° branched crack was examined here. For the
proportion of the crack shown in Figure 5 the plate can very well be treated as an infinite body.
The discretization scheme employed is shown in Figure 5. In this analysis the kink dimension was
held constant but the main crack length was varied. The first case was considered with the main
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Tabel II. Comparisons of J in the double edge kinked cracks in a tension strip

J (kg mm/mm?)

Finite element Percentage diff-
Kink Analytical based Present erence with
angle A (Ref. 4) (Ref. 5) computation analytical
15° 0-85733 0-019858 — 0-019476 —-192
30° 075197 001789 0-0184 0-017570 —1-77
45° 0-67358 0-01497 00151 0-014526 —2:96
60° 0-61573 001156 0-0112 0-010900 —568
75° 0-57386 0-00814 0-00754 0-007666 —582
90° 054448 0-005138 — 0-004950 —3:66
d \ / d
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Figure 4. A refined discretization for the double edge kinked crack: (a) discretization away from the kink; (b)
discretization near the kink

crack extending from 1 to 9 and the kink extending from 9 to 10 (Figure 5). For the second case
the left hand tip of the main crack was shifted from location 1 to 2 and the appropriate pair of
nodes lying between 1 and 2 were made to coalesce. Thus seven cases were studied by varying the
left hand tip locations from 1 to 7 (Figure 5). The J initegral was computed along three different
contours. A comparison with the results of Lo® is presented in Table V and Figure 6 for different

¢/l ratios. Lo’s results, which are quoted in terms of K, and K, were converted in terms of J for
this comparison. : ‘
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Table II1. Effect of mesh refinement on J computation in the case of double edge kinked crack problem

J (kgmm/mm?)
Mesh 1 Mesh2 Mesh 3
(No. of elements = 152.  (No. of elements = 236.  (No. of elements = 256.
No. of nodes = 172) No. of nodes = 275) No. of nodes = 287)
Based on ~ Based on Based on
Analytical three three three
] (Ref. 4) contours Average contours Average contours Average
0-01938 v 001928 001946
15° 0-019858 001887 0019476 ~ 0-01875 0-019366 001921 0-01959
002018 0-02007 002011
0-01733 0-01721 001745
30° 0-01789 0-01720 001757 0-01706 0017443 001743 0-017666
0-01819 0-01806 001812
0-01430 001449 001504
45° 001497 0-01473 0-014526 0-01429 0-014503 001489 001496
0-01455 001473 001495
0-01190 ) 001002 . 001076
60° 0-01156 0-01043 0-01090 . 000996 0-01005 001068 0010686
0-01038 001017 , 001062

Table IV. Influence of mesh refinement on crack opening displacement
(COD) in the loading direction at the knee

COD (mm)
Kink angle
[/ Mesh 1 Mesh 2 Mesh 3
15° 0-000616 0000616 0000623
30° 0-000580 0000580 0-000588
45° o 0-000540 0-000540 0-000548

60° : 0-000486 0-000480 0-000490

DISCUSSION AND CONCLUSIONS

The formulation given above presents a radical approach for modelling arbitrary singularities
occurring at two neighbouring points in a domain by a single element. The new element offers a
very elegant and computationally advantageous way of modelling a propagating crack that is
handled in a step-by-step analysis, short kinked cracks, cotrosion cracks, etc. The element
formulation is straightforward and can be easily incorporated in a displacement based finite
element package. The case studies presented here indicate that the accuracy of results is improv;d
by using the TSP element in the discretization and this is achieved with a great reduction in
computational cost. '
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Figure 5. (a) Asymmetrically branched crack in an infinite plate under tension. (b), (c) and (d) Discretization schemes
near to and away from the crack
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Table V. Comparison of analytical and computed J for the case of asymmetrically branched crack in
an infinite plate

Computed J (kg mm/mm?)

Based on EJ EJ
different . average a*ne Percentage

c c/l contours Average otnc (Ref. 8) difference

0005175 '

05 12.5 0005089 00051756 069193 068112 +158
0005263
0003886 ’ »

0375 9-375 0003825  0:0038870 069287 068731 +0:81
0-003950
0002618 |

025 625 0:002581 00026186 070018 069719 +043
0002657 ~
0001390

0125 3125 0-001376 0-0013900 074332 0-74126 +028
0001404 ‘ :

0001103
0-09375 2-34375 0001094 0-0011030  ~ 0-78645 0-77339 +1-69
. . 0-001112 A : , .
0-0008096

0-0625 1-5625 0-0008057 ~ 0-0008101 0-36645 0-83969 +3-19
00008151

00005968 ' ‘
0-04375 109375 00005962 - 000059813 - 091388 092603 - —131
100006014 . o

In the ﬁrst example the smgle edge kmked crack problem the TSP element helps to obtain
better accuracy than the best.attainable using the existing singularity elements.® In the second
example, the double edge kinked crack problem, the computed J values (Table III) are reasonably
path independent and are affected marginally by the mesh refinement. We observe that, for
6> 60°, the path independence characteristics of computed J are affected. The difference between
the average and the analytical J is less than 6 per cent (Table II).-On the whole we are able to
obtain an accuracy close to that of Reference 5, in spite of a very low number of nodes (about a
fourth) being used in our analysis. There is no reference which could facilitate a comparison of the
COD’s. However, Tables II, III and IV, can be taken to mean that the displacements have
reached a good state of convergence and these can be determined reasonably accurately using a
coarse discretization around the crack tip in the presence of a TSP element.

In the third example the computed resuits are comparable with the analytical solutmn for the
ratios of kink length to half crack length (c/l) varying from 1 (approximately) to 12-5. Therefore
the TSP element can be used not only in the case when the kink length is sufficiently small
compared with half the main crack length but also for the case when the kink length is
comparable to half the main crack length. The TSP element, as it stands, does not meet the
completeness requirement. This could lead to difficulties for its adoption in thermal stress
problems, Efforts are now being directed to eliminate this shortcoming,
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Figure 6. Comparison of analytical and computed J for the case of asymmetrically branched crack in an infinite plate
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